Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvnbtwn2 Structured version   Visualization version   GIF version

Theorem lcvnbtwn2 33780
Description: The covers relation implies no in-betweenness. (cvnbtwn2 28986 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lcvnbtwn.s 𝑆 = (LSubSp‘𝑊)
lcvnbtwn.c 𝐶 = ( ⋖L𝑊)
lcvnbtwn.w (𝜑𝑊𝑋)
lcvnbtwn.r (𝜑𝑅𝑆)
lcvnbtwn.t (𝜑𝑇𝑆)
lcvnbtwn.u (𝜑𝑈𝑆)
lcvnbtwn.d (𝜑𝑅𝐶𝑇)
lcvnbtwn2.p (𝜑𝑅𝑈)
lcvnbtwn2.q (𝜑𝑈𝑇)
Assertion
Ref Expression
lcvnbtwn2 (𝜑𝑈 = 𝑇)

Proof of Theorem lcvnbtwn2
StepHypRef Expression
1 lcvnbtwn2.p . 2 (𝜑𝑅𝑈)
2 lcvnbtwn2.q . 2 (𝜑𝑈𝑇)
3 lcvnbtwn.s . . . 4 𝑆 = (LSubSp‘𝑊)
4 lcvnbtwn.c . . . 4 𝐶 = ( ⋖L𝑊)
5 lcvnbtwn.w . . . 4 (𝜑𝑊𝑋)
6 lcvnbtwn.r . . . 4 (𝜑𝑅𝑆)
7 lcvnbtwn.t . . . 4 (𝜑𝑇𝑆)
8 lcvnbtwn.u . . . 4 (𝜑𝑈𝑆)
9 lcvnbtwn.d . . . 4 (𝜑𝑅𝐶𝑇)
103, 4, 5, 6, 7, 8, 9lcvnbtwn 33778 . . 3 (𝜑 → ¬ (𝑅𝑈𝑈𝑇))
11 iman 440 . . . 4 (((𝑅𝑈𝑈𝑇) → 𝑈 = 𝑇) ↔ ¬ ((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑈 = 𝑇))
12 anass 680 . . . . . 6 (((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑈 = 𝑇) ↔ (𝑅𝑈 ∧ (𝑈𝑇 ∧ ¬ 𝑈 = 𝑇)))
13 dfpss2 3675 . . . . . . 7 (𝑈𝑇 ↔ (𝑈𝑇 ∧ ¬ 𝑈 = 𝑇))
1413anbi2i 729 . . . . . 6 ((𝑅𝑈𝑈𝑇) ↔ (𝑅𝑈 ∧ (𝑈𝑇 ∧ ¬ 𝑈 = 𝑇)))
1512, 14bitr4i 267 . . . . 5 (((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑈 = 𝑇) ↔ (𝑅𝑈𝑈𝑇))
1615notbii 310 . . . 4 (¬ ((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑈 = 𝑇) ↔ ¬ (𝑅𝑈𝑈𝑇))
1711, 16bitr2i 265 . . 3 (¬ (𝑅𝑈𝑈𝑇) ↔ ((𝑅𝑈𝑈𝑇) → 𝑈 = 𝑇))
1810, 17sylib 208 . 2 (𝜑 → ((𝑅𝑈𝑈𝑇) → 𝑈 = 𝑇))
191, 2, 18mp2and 714 1 (𝜑𝑈 = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1992  wss 3560  wpss 3561   class class class wbr 4618  cfv 5850  LSubSpclss 18846  L clcv 33771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-iota 5813  df-fun 5852  df-fv 5858  df-lcv 33772
This theorem is referenced by:  lcvat  33783  lsatexch  33796
  Copyright terms: Public domain W3C validator