Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvnbtwn3 Structured version   Visualization version   GIF version

Theorem lcvnbtwn3 33822
Description: The covers relation implies no in-betweenness. (cvnbtwn3 29014 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lcvnbtwn.s 𝑆 = (LSubSp‘𝑊)
lcvnbtwn.c 𝐶 = ( ⋖L𝑊)
lcvnbtwn.w (𝜑𝑊𝑋)
lcvnbtwn.r (𝜑𝑅𝑆)
lcvnbtwn.t (𝜑𝑇𝑆)
lcvnbtwn.u (𝜑𝑈𝑆)
lcvnbtwn.d (𝜑𝑅𝐶𝑇)
lcvnbtwn3.p (𝜑𝑅𝑈)
lcvnbtwn3.q (𝜑𝑈𝑇)
Assertion
Ref Expression
lcvnbtwn3 (𝜑𝑈 = 𝑅)

Proof of Theorem lcvnbtwn3
StepHypRef Expression
1 lcvnbtwn3.p . 2 (𝜑𝑅𝑈)
2 lcvnbtwn3.q . 2 (𝜑𝑈𝑇)
3 lcvnbtwn.s . . . 4 𝑆 = (LSubSp‘𝑊)
4 lcvnbtwn.c . . . 4 𝐶 = ( ⋖L𝑊)
5 lcvnbtwn.w . . . 4 (𝜑𝑊𝑋)
6 lcvnbtwn.r . . . 4 (𝜑𝑅𝑆)
7 lcvnbtwn.t . . . 4 (𝜑𝑇𝑆)
8 lcvnbtwn.u . . . 4 (𝜑𝑈𝑆)
9 lcvnbtwn.d . . . 4 (𝜑𝑅𝐶𝑇)
103, 4, 5, 6, 7, 8, 9lcvnbtwn 33819 . . 3 (𝜑 → ¬ (𝑅𝑈𝑈𝑇))
11 iman 440 . . . 4 (((𝑅𝑈𝑈𝑇) → 𝑅 = 𝑈) ↔ ¬ ((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑅 = 𝑈))
12 eqcom 2628 . . . . 5 (𝑈 = 𝑅𝑅 = 𝑈)
1312imbi2i 326 . . . 4 (((𝑅𝑈𝑈𝑇) → 𝑈 = 𝑅) ↔ ((𝑅𝑈𝑈𝑇) → 𝑅 = 𝑈))
14 dfpss2 3675 . . . . . . 7 (𝑅𝑈 ↔ (𝑅𝑈 ∧ ¬ 𝑅 = 𝑈))
1514anbi1i 730 . . . . . 6 ((𝑅𝑈𝑈𝑇) ↔ ((𝑅𝑈 ∧ ¬ 𝑅 = 𝑈) ∧ 𝑈𝑇))
16 an32 838 . . . . . 6 (((𝑅𝑈 ∧ ¬ 𝑅 = 𝑈) ∧ 𝑈𝑇) ↔ ((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑅 = 𝑈))
1715, 16bitri 264 . . . . 5 ((𝑅𝑈𝑈𝑇) ↔ ((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑅 = 𝑈))
1817notbii 310 . . . 4 (¬ (𝑅𝑈𝑈𝑇) ↔ ¬ ((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑅 = 𝑈))
1911, 13, 183bitr4ri 293 . . 3 (¬ (𝑅𝑈𝑈𝑇) ↔ ((𝑅𝑈𝑈𝑇) → 𝑈 = 𝑅))
2010, 19sylib 208 . 2 (𝜑 → ((𝑅𝑈𝑈𝑇) → 𝑈 = 𝑅))
211, 2, 20mp2and 714 1 (𝜑𝑈 = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  wss 3559  wpss 3560   class class class wbr 4618  cfv 5852  LSubSpclss 18860  L clcv 33812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-iota 5815  df-fun 5854  df-fv 5860  df-lcv 33813
This theorem is referenced by:  lsatcveq0  33826  lsatcvatlem  33843
  Copyright terms: Public domain W3C validator