Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvpss Structured version   Visualization version   GIF version

Theorem lcvpss 34137
Description: The covers relation implies proper subset. (cvpss 29128 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lcvfbr.s 𝑆 = (LSubSp‘𝑊)
lcvfbr.c 𝐶 = ( ⋖L𝑊)
lcvfbr.w (𝜑𝑊𝑋)
lcvfbr.t (𝜑𝑇𝑆)
lcvfbr.u (𝜑𝑈𝑆)
lcvpss.d (𝜑𝑇𝐶𝑈)
Assertion
Ref Expression
lcvpss (𝜑𝑇𝑈)

Proof of Theorem lcvpss
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lcvpss.d . . 3 (𝜑𝑇𝐶𝑈)
2 lcvfbr.s . . . 4 𝑆 = (LSubSp‘𝑊)
3 lcvfbr.c . . . 4 𝐶 = ( ⋖L𝑊)
4 lcvfbr.w . . . 4 (𝜑𝑊𝑋)
5 lcvfbr.t . . . 4 (𝜑𝑇𝑆)
6 lcvfbr.u . . . 4 (𝜑𝑈𝑆)
72, 3, 4, 5, 6lcvbr 34134 . . 3 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
81, 7mpbid 222 . 2 (𝜑 → (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))
98simpld 475 1 (𝜑𝑇𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1482  wcel 1989  wrex 2912  wpss 3573   class class class wbr 4651  cfv 5886  LSubSpclss 18926  L clcv 34131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-iota 5849  df-fun 5888  df-fv 5894  df-lcv 34132
This theorem is referenced by:  lcvntr  34139  lcvat  34143  lsatcveq0  34145  lsat0cv  34146  lcvexchlem4  34150  lcvexchlem5  34151  lcv1  34154  lsatexch  34156  lsatcvat2  34164  islshpcv  34166
  Copyright terms: Public domain W3C validator