Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepsnlinclem2 Structured version   Visualization version   GIF version

Theorem ldepsnlinclem2 42088
Description: Lemma 2 for ldepsnlinc 42090. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
Assertion
Ref Expression
ldepsnlinclem2 (𝐹 ∈ ((Base‘ℤring) ↑𝑚 {𝐴}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵)

Proof of Theorem ldepsnlinclem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 elmapi 7739 . 2 (𝐹 ∈ ((Base‘ℤring) ↑𝑚 {𝐴}) → 𝐹:{𝐴}⟶(Base‘ℤring))
2 zlmodzxzldep.a . . . . 5 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
3 prex 4828 . . . . 5 {⟨0, 3⟩, ⟨1, 6⟩} ∈ V
42, 3eqeltri 2680 . . . 4 𝐴 ∈ V
54fsn2 6291 . . 3 (𝐹:{𝐴}⟶(Base‘ℤring) ↔ ((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
6 oveq1 6531 . . . . . 6 (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → (𝐹( linC ‘𝑍){𝐴}) = ({⟨𝐴, (𝐹𝐴)⟩} ( linC ‘𝑍){𝐴}))
76adantl 480 . . . . 5 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹( linC ‘𝑍){𝐴}) = ({⟨𝐴, (𝐹𝐴)⟩} ( linC ‘𝑍){𝐴}))
8 zlmodzxzldep.z . . . . . . . . 9 𝑍 = (ℤring freeLMod {0, 1})
98zlmodzxzlmod 41924 . . . . . . . 8 (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍))
109simpli 472 . . . . . . 7 𝑍 ∈ LMod
1110a1i 11 . . . . . 6 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → 𝑍 ∈ LMod)
12 3z 11240 . . . . . . . . 9 3 ∈ ℤ
13 6nn 11033 . . . . . . . . . 10 6 ∈ ℕ
1413nnzi 11231 . . . . . . . . 9 6 ∈ ℤ
158zlmodzxzel 41925 . . . . . . . . 9 ((3 ∈ ℤ ∧ 6 ∈ ℤ) → {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍))
1612, 14, 15mp2an 703 . . . . . . . 8 {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍)
172, 16eqeltri 2680 . . . . . . 7 𝐴 ∈ (Base‘𝑍)
1817a1i 11 . . . . . 6 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → 𝐴 ∈ (Base‘𝑍))
19 simpl 471 . . . . . 6 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹𝐴) ∈ (Base‘ℤring))
20 eqid 2606 . . . . . . 7 (Base‘𝑍) = (Base‘𝑍)
219simpri 476 . . . . . . 7 ring = (Scalar‘𝑍)
22 eqid 2606 . . . . . . 7 (Base‘ℤring) = (Base‘ℤring)
23 eqid 2606 . . . . . . 7 ( ·𝑠𝑍) = ( ·𝑠𝑍)
2420, 21, 22, 23lincvalsng 41998 . . . . . 6 ((𝑍 ∈ LMod ∧ 𝐴 ∈ (Base‘𝑍) ∧ (𝐹𝐴) ∈ (Base‘ℤring)) → ({⟨𝐴, (𝐹𝐴)⟩} ( linC ‘𝑍){𝐴}) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
2511, 18, 19, 24syl3anc 1317 . . . . 5 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ({⟨𝐴, (𝐹𝐴)⟩} ( linC ‘𝑍){𝐴}) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
267, 25eqtrd 2640 . . . 4 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹( linC ‘𝑍){𝐴}) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
27 eqid 2606 . . . . . 6 {⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
28 eqid 2606 . . . . . 6 (-g𝑍) = (-g𝑍)
29 zlmodzxzldep.b . . . . . 6 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
308, 27, 23, 28, 2, 29zlmodzxznm 42079 . . . . 5 𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴)
31 r19.26 3042 . . . . . 6 (∀𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) ↔ (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴))
32 zringbas 19586 . . . . . . . . . . . . 13 ℤ = (Base‘ℤring)
3332eqcomi 2615 . . . . . . . . . . . 12 (Base‘ℤring) = ℤ
3433eleq2i 2676 . . . . . . . . . . 11 ((𝐹𝐴) ∈ (Base‘ℤring) ↔ (𝐹𝐴) ∈ ℤ)
3534biimpi 204 . . . . . . . . . 10 ((𝐹𝐴) ∈ (Base‘ℤring) → (𝐹𝐴) ∈ ℤ)
3635adantr 479 . . . . . . . . 9 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹𝐴) ∈ ℤ)
37 oveq1 6531 . . . . . . . . . . 11 (𝑖 = (𝐹𝐴) → (𝑖( ·𝑠𝑍)𝐴) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
3837neeq1d 2837 . . . . . . . . . 10 (𝑖 = (𝐹𝐴) → ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ↔ ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
3938rspcv 3274 . . . . . . . . 9 ((𝐹𝐴) ∈ ℤ → (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
4036, 39syl 17 . . . . . . . 8 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
4140com12 32 . . . . . . 7 (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 → (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
4241adantr 479 . . . . . 6 ((∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) → (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
4331, 42sylbi 205 . . . . 5 (∀𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) → (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
4430, 43ax-mp 5 . . . 4 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵)
4526, 44eqnetrd 2845 . . 3 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵)
465, 45sylbi 205 . 2 (𝐹:{𝐴}⟶(Base‘ℤring) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵)
471, 46syl 17 1 (𝐹 ∈ ((Base‘ℤring) ↑𝑚 {𝐴}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wne 2776  wral 2892  Vcvv 3169  {csn 4121  {cpr 4123  cop 4127  wf 5783  cfv 5787  (class class class)co 6524  𝑚 cmap 7718  0cc0 9789  1c1 9790  2c2 10914  3c3 10915  4c4 10916  6c6 10918  cz 11207  Basecbs 15638  Scalarcsca 15714   ·𝑠 cvsca 15715  -gcsg 17190  LModclmod 18629  ringzring 19580   freeLMod cfrlm 19848   linC clinc 41986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-inf2 8395  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866  ax-pre-sup 9867  ax-addf 9868  ax-mulf 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-se 4985  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-isom 5796  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-of 6769  df-om 6932  df-1st 7033  df-2nd 7034  df-supp 7157  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-2o 7422  df-oadd 7425  df-er 7603  df-map 7720  df-ixp 7769  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-fsupp 8133  df-sup 8205  df-inf 8206  df-oi 8272  df-card 8622  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-div 10531  df-nn 10865  df-2 10923  df-3 10924  df-4 10925  df-5 10926  df-6 10927  df-7 10928  df-8 10929  df-9 10930  df-n0 11137  df-z 11208  df-dec 11323  df-uz 11517  df-rp 11662  df-fz 12150  df-fzo 12287  df-seq 12616  df-exp 12675  df-hash 12932  df-cj 13630  df-re 13631  df-im 13632  df-sqrt 13766  df-abs 13767  df-dvds 14765  df-prm 15167  df-struct 15640  df-ndx 15641  df-slot 15642  df-base 15643  df-sets 15644  df-ress 15645  df-plusg 15724  df-mulr 15725  df-starv 15726  df-sca 15727  df-vsca 15728  df-ip 15729  df-tset 15730  df-ple 15731  df-ds 15734  df-unif 15735  df-hom 15736  df-cco 15737  df-0g 15868  df-gsum 15869  df-prds 15874  df-pws 15876  df-mgm 17008  df-sgrp 17050  df-mnd 17061  df-grp 17191  df-minusg 17192  df-sbg 17193  df-mulg 17307  df-subg 17357  df-cntz 17516  df-cmn 17961  df-mgp 18256  df-ur 18268  df-ring 18315  df-cring 18316  df-subrg 18544  df-lmod 18631  df-lss 18697  df-sra 18936  df-rgmod 18937  df-cnfld 19511  df-zring 19581  df-dsmm 19834  df-frlm 19849  df-linc 41988
This theorem is referenced by:  ldepsnlinc  42090
  Copyright terms: Public domain W3C validator