Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepspr Structured version   Visualization version   GIF version

Theorem ldepspr 41547
Description: If a vector is a scalar multiple of another vector, the (unordered pair containing the) two vectors are linearly dependent. (Contributed by AV, 16-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
snlindsntor.b 𝐵 = (Base‘𝑀)
snlindsntor.r 𝑅 = (Scalar‘𝑀)
snlindsntor.s 𝑆 = (Base‘𝑅)
snlindsntor.0 0 = (0g𝑅)
snlindsntor.z 𝑍 = (0g𝑀)
snlindsntor.t · = ( ·𝑠𝑀)
Assertion
Ref Expression
ldepspr ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → {𝑋, 𝑌} linDepS 𝑀))

Proof of Theorem ldepspr
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpa 1056 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑋𝐵𝑌𝐵))
21ad2antlr 762 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑋𝐵𝑌𝐵))
3 fvex 6158 . . . . . . . 8 (1r𝑅) ∈ V
4 fvex 6158 . . . . . . . 8 ((invg𝑅)‘𝐴) ∈ V
53, 4pm3.2i 471 . . . . . . 7 ((1r𝑅) ∈ V ∧ ((invg𝑅)‘𝐴) ∈ V)
65a1i 11 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((1r𝑅) ∈ V ∧ ((invg𝑅)‘𝐴) ∈ V))
7 simp3 1061 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑋𝑌) → 𝑋𝑌)
87ad2antlr 762 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝑋𝑌)
9 fprg 6376 . . . . . 6 (((𝑋𝐵𝑌𝐵) ∧ ((1r𝑅) ∈ V ∧ ((invg𝑅)‘𝐴) ∈ V) ∧ 𝑋𝑌) → {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}:{𝑋, 𝑌}⟶{(1r𝑅), ((invg𝑅)‘𝐴)})
102, 6, 8, 9syl3anc 1323 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}:{𝑋, 𝑌}⟶{(1r𝑅), ((invg𝑅)‘𝐴)})
11 prfi 8179 . . . . . 6 {𝑋, 𝑌} ∈ Fin
1211a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {𝑋, 𝑌} ∈ Fin)
13 snlindsntor.0 . . . . . . 7 0 = (0g𝑅)
14 fvex 6158 . . . . . . 7 (0g𝑅) ∈ V
1513, 14eqeltri 2694 . . . . . 6 0 ∈ V
1615a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 0 ∈ V)
1710, 12, 16fdmfifsupp 8229 . . . 4 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} finSupp 0 )
187anim2i 592 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑀 ∈ LMod ∧ 𝑋𝑌))
1918adantr 481 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑀 ∈ LMod ∧ 𝑋𝑌))
20 snlindsntor.r . . . . . . . . 9 𝑅 = (Scalar‘𝑀)
21 snlindsntor.s . . . . . . . . 9 𝑆 = (Base‘𝑅)
22 eqid 2621 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
2320, 21, 22lmod1cl 18811 . . . . . . . 8 (𝑀 ∈ LMod → (1r𝑅) ∈ 𝑆)
24 simp1 1059 . . . . . . . 8 ((𝑋𝐵𝑌𝐵𝑋𝑌) → 𝑋𝐵)
2523, 24anim12ci 590 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑋𝐵 ∧ (1r𝑅) ∈ 𝑆))
2625adantr 481 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑋𝐵 ∧ (1r𝑅) ∈ 𝑆))
27 simp2 1060 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑋𝑌) → 𝑌𝐵)
2827ad2antlr 762 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝑌𝐵)
2920lmodfgrp 18793 . . . . . . . 8 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
3029adantr 481 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → 𝑅 ∈ Grp)
31 simpl 473 . . . . . . 7 ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → 𝐴𝑆)
32 eqid 2621 . . . . . . . 8 (invg𝑅) = (invg𝑅)
3321, 32grpinvcl 17388 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝐴𝑆) → ((invg𝑅)‘𝐴) ∈ 𝑆)
3430, 31, 33syl2an 494 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((invg𝑅)‘𝐴) ∈ 𝑆)
35 snlindsntor.b . . . . . . 7 𝐵 = (Base‘𝑀)
36 snlindsntor.t . . . . . . 7 · = ( ·𝑠𝑀)
37 eqid 2621 . . . . . . 7 (+g𝑀) = (+g𝑀)
38 eqid 2621 . . . . . . 7 {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}
3935, 20, 21, 36, 37, 38lincvalpr 41492 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝑌) ∧ (𝑋𝐵 ∧ (1r𝑅) ∈ 𝑆) ∧ (𝑌𝐵 ∧ ((invg𝑅)‘𝐴) ∈ 𝑆)) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = (((1r𝑅) · 𝑋)(+g𝑀)(((invg𝑅)‘𝐴) · 𝑌)))
4019, 26, 28, 34, 39syl112anc 1327 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = (((1r𝑅) · 𝑋)(+g𝑀)(((invg𝑅)‘𝐴) · 𝑌)))
41 simpll 789 . . . . . . 7 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝑀 ∈ LMod)
4224ad2antlr 762 . . . . . . . 8 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝑋𝐵)
4331adantl 482 . . . . . . . 8 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝐴𝑆)
4442, 28, 433jca 1240 . . . . . . 7 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑋𝐵𝑌𝐵𝐴𝑆))
4541, 44jca 554 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)))
46 simprr 795 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝑋 = (𝐴 · 𝑌))
47 snlindsntor.z . . . . . . 7 𝑍 = (0g𝑀)
4835, 20, 21, 13, 47, 36, 22, 32ldepsprlem 41546 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (𝑋 = (𝐴 · 𝑌) → (((1r𝑅) · 𝑋)(+g𝑀)(((invg𝑅)‘𝐴) · 𝑌)) = 𝑍))
4945, 46, 48sylc 65 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (((1r𝑅) · 𝑋)(+g𝑀)(((invg𝑅)‘𝐴) · 𝑌)) = 𝑍)
5040, 49eqtrd 2655 . . . 4 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍)
5120lmodring 18792 . . . . . . . . . 10 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
52 eqcom 2628 . . . . . . . . . . . 12 ((1r𝑅) = (0g𝑅) ↔ (0g𝑅) = (1r𝑅))
53 eqid 2621 . . . . . . . . . . . . . . 15 (0g𝑅) = (0g𝑅)
5421, 53, 2201eq0ring 19191 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → 𝑆 = {(0g𝑅)})
55 sneq 4158 . . . . . . . . . . . . . . . . 17 ((0g𝑅) = (1r𝑅) → {(0g𝑅)} = {(1r𝑅)})
5655eqeq2d 2631 . . . . . . . . . . . . . . . 16 ((0g𝑅) = (1r𝑅) → (𝑆 = {(0g𝑅)} ↔ 𝑆 = {(1r𝑅)}))
57 eleq2 2687 . . . . . . . . . . . . . . . . . . 19 (𝑆 = {(1r𝑅)} → (𝐴𝑆𝐴 ∈ {(1r𝑅)}))
58 elsni 4165 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ {(1r𝑅)} → 𝐴 = (1r𝑅))
59 oveq1 6611 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 = (1r𝑅) → (𝐴 · 𝑌) = ((1r𝑅) · 𝑌))
6059eqeq2d 2631 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = (1r𝑅) → (𝑋 = (𝐴 · 𝑌) ↔ 𝑋 = ((1r𝑅) · 𝑌)))
6127anim1i 591 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → (𝑌𝐵𝑀 ∈ LMod))
6261ancomd 467 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → (𝑀 ∈ LMod ∧ 𝑌𝐵))
6335, 20, 36, 22lmodvs1 18812 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ LMod ∧ 𝑌𝐵) → ((1r𝑅) · 𝑌) = 𝑌)
6462, 63syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → ((1r𝑅) · 𝑌) = 𝑌)
6564eqeq2d 2631 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → (𝑋 = ((1r𝑅) · 𝑌) ↔ 𝑋 = 𝑌))
66 eqneqall 2801 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑋 = 𝑌 → (𝑋𝑌 → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
6766com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑋𝑌 → (𝑋 = 𝑌 → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
68673ad2ant3 1082 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑋 = 𝑌 → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
6968adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → (𝑋 = 𝑌 → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
7065, 69sylbid 230 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → (𝑋 = ((1r𝑅) · 𝑌) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
7170ex 450 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (𝑋 = ((1r𝑅) · 𝑌) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))
7271com3r 87 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 = ((1r𝑅) · 𝑌) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))
7360, 72syl6bi 243 . . . . . . . . . . . . . . . . . . . 20 (𝐴 = (1r𝑅) → (𝑋 = (𝐴 · 𝑌) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
7458, 73syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ {(1r𝑅)} → (𝑋 = (𝐴 · 𝑌) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
7557, 74syl6bi 243 . . . . . . . . . . . . . . . . . 18 (𝑆 = {(1r𝑅)} → (𝐴𝑆 → (𝑋 = (𝐴 · 𝑌) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
7675impd 447 . . . . . . . . . . . . . . . . 17 (𝑆 = {(1r𝑅)} → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
7776com23 86 . . . . . . . . . . . . . . . 16 (𝑆 = {(1r𝑅)} → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
7856, 77syl6bi 243 . . . . . . . . . . . . . . 15 ((0g𝑅) = (1r𝑅) → (𝑆 = {(0g𝑅)} → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
7978adantl 482 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → (𝑆 = {(0g𝑅)} → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
8054, 79mpd 15 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
8180ex 450 . . . . . . . . . . . 12 (𝑅 ∈ Ring → ((0g𝑅) = (1r𝑅) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
8252, 81syl5bi 232 . . . . . . . . . . 11 (𝑅 ∈ Ring → ((1r𝑅) = (0g𝑅) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
8382com25 99 . . . . . . . . . 10 (𝑅 ∈ Ring → (𝑀 ∈ LMod → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → ((1r𝑅) = (0g𝑅) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
8451, 83mpcom 38 . . . . . . . . 9 (𝑀 ∈ LMod → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → ((1r𝑅) = (0g𝑅) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
8584imp31 448 . . . . . . . 8 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((1r𝑅) = (0g𝑅) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
86 orc 400 . . . . . . . 8 (¬ (1r𝑅) = (0g𝑅) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))
8785, 86pm2.61d1 171 . . . . . . 7 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))
8813eqeq2i 2633 . . . . . . . . 9 ((1r𝑅) = 0 ↔ (1r𝑅) = (0g𝑅))
8988necon3abii 2836 . . . . . . . 8 ((1r𝑅) ≠ 0 ↔ ¬ (1r𝑅) = (0g𝑅))
9089orbi1i 542 . . . . . . 7 (((1r𝑅) ≠ 0 ∨ ((invg𝑅)‘𝐴) ≠ 0 ) ↔ (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))
9187, 90sylibr 224 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((1r𝑅) ≠ 0 ∨ ((invg𝑅)‘𝐴) ≠ 0 ))
923a1i 11 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (1r𝑅) ∈ V)
93 fvpr1g 6412 . . . . . . . . 9 ((𝑋𝐵 ∧ (1r𝑅) ∈ V ∧ 𝑋𝑌) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) = (1r𝑅))
9442, 92, 8, 93syl3anc 1323 . . . . . . . 8 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) = (1r𝑅))
9594neeq1d 2849 . . . . . . 7 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ↔ (1r𝑅) ≠ 0 ))
964a1i 11 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((invg𝑅)‘𝐴) ∈ V)
97 fvpr2g 6413 . . . . . . . . 9 ((𝑌𝐵 ∧ ((invg𝑅)‘𝐴) ∈ V ∧ 𝑋𝑌) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) = ((invg𝑅)‘𝐴))
9828, 96, 8, 97syl3anc 1323 . . . . . . . 8 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) = ((invg𝑅)‘𝐴))
9998neeq1d 2849 . . . . . . 7 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 ↔ ((invg𝑅)‘𝐴) ≠ 0 ))
10095, 99orbi12d 745 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ∨ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 ) ↔ ((1r𝑅) ≠ 0 ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
10191, 100mpbird 247 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ∨ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 ))
102 fveq2 6148 . . . . . . . 8 (𝑣 = 𝑋 → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) = ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋))
103102neeq1d 2849 . . . . . . 7 (𝑣 = 𝑋 → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ))
104 fveq2 6148 . . . . . . . 8 (𝑣 = 𝑌 → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) = ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌))
105104neeq1d 2849 . . . . . . 7 (𝑣 = 𝑌 → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 ))
106103, 105rexprg 4206 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ↔ (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ∨ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 )))
1072, 106syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ↔ (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ∨ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 )))
108101, 107mpbird 247 . . . 4 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 )
10923adantr 481 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (1r𝑅) ∈ 𝑆)
110109adantr 481 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (1r𝑅) ∈ 𝑆)
111 fvex 6158 . . . . . . . 8 (Base‘𝑅) ∈ V
11221, 111eqeltri 2694 . . . . . . 7 𝑆 ∈ V
1138, 112jctir 560 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑋𝑌𝑆 ∈ V))
11438mapprop 41409 . . . . . 6 (((𝑋𝐵 ∧ (1r𝑅) ∈ 𝑆) ∧ (𝑌𝐵 ∧ ((invg𝑅)‘𝐴) ∈ 𝑆) ∧ (𝑋𝑌𝑆 ∈ V)) → {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ∈ (𝑆𝑚 {𝑋, 𝑌}))
11542, 110, 28, 34, 113, 114syl221anc 1334 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ∈ (𝑆𝑚 {𝑋, 𝑌}))
116 breq1 4616 . . . . . . 7 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → (𝑓 finSupp 0 ↔ {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} finSupp 0 ))
117 oveq1 6611 . . . . . . . 8 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → (𝑓( linC ‘𝑀){𝑋, 𝑌}) = ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}))
118117eqeq1d 2623 . . . . . . 7 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → ((𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍))
119 fveq1 6147 . . . . . . . . 9 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → (𝑓𝑣) = ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣))
120119neeq1d 2849 . . . . . . . 8 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → ((𝑓𝑣) ≠ 0 ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ))
121120rexbidv 3045 . . . . . . 7 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → (∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 ↔ ∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ))
122116, 118, 1213anbi123d 1396 . . . . . 6 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 ) ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} finSupp 0 ∧ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 )))
123122adantl 482 . . . . 5 ((((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) ∧ 𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 ) ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} finSupp 0 ∧ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 )))
124115, 123rspcedv 3299 . . . 4 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} finSupp 0 ∧ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ) → ∃𝑓 ∈ (𝑆𝑚 {𝑋, 𝑌})(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 )))
12517, 50, 108, 124mp3and 1424 . . 3 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ∃𝑓 ∈ (𝑆𝑚 {𝑋, 𝑌})(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 ))
126 prelpwi 4876 . . . . . 6 ((𝑋𝐵𝑌𝐵) → {𝑋, 𝑌} ∈ 𝒫 𝐵)
1271263adant3 1079 . . . . 5 ((𝑋𝐵𝑌𝐵𝑋𝑌) → {𝑋, 𝑌} ∈ 𝒫 𝐵)
128127ad2antlr 762 . . . 4 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {𝑋, 𝑌} ∈ 𝒫 𝐵)
12935, 47, 20, 21, 13islindeps 41527 . . . 4 ((𝑀 ∈ LMod ∧ {𝑋, 𝑌} ∈ 𝒫 𝐵) → ({𝑋, 𝑌} linDepS 𝑀 ↔ ∃𝑓 ∈ (𝑆𝑚 {𝑋, 𝑌})(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 )))
13041, 128, 129syl2anc 692 . . 3 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ({𝑋, 𝑌} linDepS 𝑀 ↔ ∃𝑓 ∈ (𝑆𝑚 {𝑋, 𝑌})(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 )))
131125, 130mpbird 247 . 2 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {𝑋, 𝑌} linDepS 𝑀)
132131ex 450 1 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → {𝑋, 𝑌} linDepS 𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wrex 2908  Vcvv 3186  𝒫 cpw 4130  {csn 4148  {cpr 4150  cop 4154   class class class wbr 4613  wf 5843  cfv 5847  (class class class)co 6604  𝑚 cmap 7802  Fincfn 7899   finSupp cfsupp 8219  Basecbs 15781  +gcplusg 15862  Scalarcsca 15865   ·𝑠 cvsca 15866  0gc0g 16021  Grpcgrp 17343  invgcminusg 17344  1rcur 18422  Ringcrg 18468  LModclmod 18784   linC clinc 41478   linDepS clindeps 41515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-0g 16023  df-gsum 16024  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-grp 17346  df-minusg 17347  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-lmod 18786  df-linc 41480  df-lininds 41516  df-lindeps 41518
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator