Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepspr Structured version   Visualization version   GIF version

Theorem ldepspr 44426
Description: If a vector is a scalar multiple of another vector, the (unordered pair containing the) two vectors are linearly dependent. (Contributed by AV, 16-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
snlindsntor.b 𝐵 = (Base‘𝑀)
snlindsntor.r 𝑅 = (Scalar‘𝑀)
snlindsntor.s 𝑆 = (Base‘𝑅)
snlindsntor.0 0 = (0g𝑅)
snlindsntor.z 𝑍 = (0g𝑀)
snlindsntor.t · = ( ·𝑠𝑀)
Assertion
Ref Expression
ldepspr ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → {𝑋, 𝑌} linDepS 𝑀))

Proof of Theorem ldepspr
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpa 1140 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑋𝐵𝑌𝐵))
21ad2antlr 723 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑋𝐵𝑌𝐵))
3 fvex 6677 . . . . . . . 8 (1r𝑅) ∈ V
4 fvex 6677 . . . . . . . 8 ((invg𝑅)‘𝐴) ∈ V
53, 4pm3.2i 471 . . . . . . 7 ((1r𝑅) ∈ V ∧ ((invg𝑅)‘𝐴) ∈ V)
65a1i 11 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((1r𝑅) ∈ V ∧ ((invg𝑅)‘𝐴) ∈ V))
7 simp3 1130 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑋𝑌) → 𝑋𝑌)
87ad2antlr 723 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝑋𝑌)
9 fprg 6910 . . . . . 6 (((𝑋𝐵𝑌𝐵) ∧ ((1r𝑅) ∈ V ∧ ((invg𝑅)‘𝐴) ∈ V) ∧ 𝑋𝑌) → {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}:{𝑋, 𝑌}⟶{(1r𝑅), ((invg𝑅)‘𝐴)})
102, 6, 8, 9syl3anc 1363 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}:{𝑋, 𝑌}⟶{(1r𝑅), ((invg𝑅)‘𝐴)})
11 prfi 8782 . . . . . 6 {𝑋, 𝑌} ∈ Fin
1211a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {𝑋, 𝑌} ∈ Fin)
13 snlindsntor.0 . . . . . . 7 0 = (0g𝑅)
1413fvexi 6678 . . . . . 6 0 ∈ V
1514a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 0 ∈ V)
1610, 12, 15fdmfifsupp 8832 . . . 4 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} finSupp 0 )
177anim2i 616 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑀 ∈ LMod ∧ 𝑋𝑌))
1817adantr 481 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑀 ∈ LMod ∧ 𝑋𝑌))
19 snlindsntor.r . . . . . . . . 9 𝑅 = (Scalar‘𝑀)
20 snlindsntor.s . . . . . . . . 9 𝑆 = (Base‘𝑅)
21 eqid 2821 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
2219, 20, 21lmod1cl 19592 . . . . . . . 8 (𝑀 ∈ LMod → (1r𝑅) ∈ 𝑆)
23 simp1 1128 . . . . . . . 8 ((𝑋𝐵𝑌𝐵𝑋𝑌) → 𝑋𝐵)
2422, 23anim12ci 613 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑋𝐵 ∧ (1r𝑅) ∈ 𝑆))
2524adantr 481 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑋𝐵 ∧ (1r𝑅) ∈ 𝑆))
26 simp2 1129 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑋𝑌) → 𝑌𝐵)
2726ad2antlr 723 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝑌𝐵)
2819lmodfgrp 19574 . . . . . . . 8 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
2928adantr 481 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → 𝑅 ∈ Grp)
30 simpl 483 . . . . . . 7 ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → 𝐴𝑆)
31 eqid 2821 . . . . . . . 8 (invg𝑅) = (invg𝑅)
3220, 31grpinvcl 18091 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝐴𝑆) → ((invg𝑅)‘𝐴) ∈ 𝑆)
3329, 30, 32syl2an 595 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((invg𝑅)‘𝐴) ∈ 𝑆)
34 snlindsntor.b . . . . . . 7 𝐵 = (Base‘𝑀)
35 snlindsntor.t . . . . . . 7 · = ( ·𝑠𝑀)
36 eqid 2821 . . . . . . 7 (+g𝑀) = (+g𝑀)
37 eqid 2821 . . . . . . 7 {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}
3834, 19, 20, 35, 36, 37lincvalpr 44371 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝑌) ∧ (𝑋𝐵 ∧ (1r𝑅) ∈ 𝑆) ∧ (𝑌𝐵 ∧ ((invg𝑅)‘𝐴) ∈ 𝑆)) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = (((1r𝑅) · 𝑋)(+g𝑀)(((invg𝑅)‘𝐴) · 𝑌)))
3918, 25, 27, 33, 38syl112anc 1366 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = (((1r𝑅) · 𝑋)(+g𝑀)(((invg𝑅)‘𝐴) · 𝑌)))
40 simpll 763 . . . . . . 7 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝑀 ∈ LMod)
4123ad2antlr 723 . . . . . . . 8 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝑋𝐵)
4230adantl 482 . . . . . . . 8 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝐴𝑆)
4341, 27, 423jca 1120 . . . . . . 7 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑋𝐵𝑌𝐵𝐴𝑆))
4440, 43jca 512 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)))
45 simprr 769 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝑋 = (𝐴 · 𝑌))
46 snlindsntor.z . . . . . . 7 𝑍 = (0g𝑀)
4734, 19, 20, 13, 46, 35, 21, 31ldepsprlem 44425 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (𝑋 = (𝐴 · 𝑌) → (((1r𝑅) · 𝑋)(+g𝑀)(((invg𝑅)‘𝐴) · 𝑌)) = 𝑍))
4844, 45, 47sylc 65 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (((1r𝑅) · 𝑋)(+g𝑀)(((invg𝑅)‘𝐴) · 𝑌)) = 𝑍)
4939, 48eqtrd 2856 . . . 4 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍)
5019lmodring 19573 . . . . . . . . . 10 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
51 eqcom 2828 . . . . . . . . . . . 12 ((1r𝑅) = (0g𝑅) ↔ (0g𝑅) = (1r𝑅))
52 eqid 2821 . . . . . . . . . . . . . . 15 (0g𝑅) = (0g𝑅)
5320, 52, 2101eq0ring 19975 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → 𝑆 = {(0g𝑅)})
54 sneq 4569 . . . . . . . . . . . . . . . . 17 ((0g𝑅) = (1r𝑅) → {(0g𝑅)} = {(1r𝑅)})
5554eqeq2d 2832 . . . . . . . . . . . . . . . 16 ((0g𝑅) = (1r𝑅) → (𝑆 = {(0g𝑅)} ↔ 𝑆 = {(1r𝑅)}))
56 eleq2 2901 . . . . . . . . . . . . . . . . . . 19 (𝑆 = {(1r𝑅)} → (𝐴𝑆𝐴 ∈ {(1r𝑅)}))
57 elsni 4576 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ {(1r𝑅)} → 𝐴 = (1r𝑅))
58 oveq1 7152 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 = (1r𝑅) → (𝐴 · 𝑌) = ((1r𝑅) · 𝑌))
5958eqeq2d 2832 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = (1r𝑅) → (𝑋 = (𝐴 · 𝑌) ↔ 𝑋 = ((1r𝑅) · 𝑌)))
6026anim1i 614 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → (𝑌𝐵𝑀 ∈ LMod))
6160ancomd 462 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → (𝑀 ∈ LMod ∧ 𝑌𝐵))
6234, 19, 35, 21lmodvs1 19593 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ LMod ∧ 𝑌𝐵) → ((1r𝑅) · 𝑌) = 𝑌)
6361, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → ((1r𝑅) · 𝑌) = 𝑌)
6463eqeq2d 2832 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → (𝑋 = ((1r𝑅) · 𝑌) ↔ 𝑋 = 𝑌))
65 eqneqall 3027 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑋 = 𝑌 → (𝑋𝑌 → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
6665com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑋𝑌 → (𝑋 = 𝑌 → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
67663ad2ant3 1127 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑋 = 𝑌 → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
6867adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → (𝑋 = 𝑌 → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
6964, 68sylbid 241 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → (𝑋 = ((1r𝑅) · 𝑌) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
7069ex 413 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (𝑋 = ((1r𝑅) · 𝑌) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))
7170com3r 87 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 = ((1r𝑅) · 𝑌) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))
7259, 71syl6bi 254 . . . . . . . . . . . . . . . . . . . 20 (𝐴 = (1r𝑅) → (𝑋 = (𝐴 · 𝑌) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
7357, 72syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ {(1r𝑅)} → (𝑋 = (𝐴 · 𝑌) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
7456, 73syl6bi 254 . . . . . . . . . . . . . . . . . 18 (𝑆 = {(1r𝑅)} → (𝐴𝑆 → (𝑋 = (𝐴 · 𝑌) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
7574impd 411 . . . . . . . . . . . . . . . . 17 (𝑆 = {(1r𝑅)} → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
7675com23 86 . . . . . . . . . . . . . . . 16 (𝑆 = {(1r𝑅)} → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
7755, 76syl6bi 254 . . . . . . . . . . . . . . 15 ((0g𝑅) = (1r𝑅) → (𝑆 = {(0g𝑅)} → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
7877adantl 482 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → (𝑆 = {(0g𝑅)} → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
7953, 78mpd 15 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
8079ex 413 . . . . . . . . . . . 12 (𝑅 ∈ Ring → ((0g𝑅) = (1r𝑅) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
8151, 80syl5bi 243 . . . . . . . . . . 11 (𝑅 ∈ Ring → ((1r𝑅) = (0g𝑅) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
8281com25 99 . . . . . . . . . 10 (𝑅 ∈ Ring → (𝑀 ∈ LMod → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → ((1r𝑅) = (0g𝑅) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
8350, 82mpcom 38 . . . . . . . . 9 (𝑀 ∈ LMod → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → ((1r𝑅) = (0g𝑅) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
8483imp31 418 . . . . . . . 8 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((1r𝑅) = (0g𝑅) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
85 orc 861 . . . . . . . 8 (¬ (1r𝑅) = (0g𝑅) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))
8684, 85pm2.61d1 181 . . . . . . 7 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))
8713eqeq2i 2834 . . . . . . . . 9 ((1r𝑅) = 0 ↔ (1r𝑅) = (0g𝑅))
8887necon3abii 3062 . . . . . . . 8 ((1r𝑅) ≠ 0 ↔ ¬ (1r𝑅) = (0g𝑅))
8988orbi1i 907 . . . . . . 7 (((1r𝑅) ≠ 0 ∨ ((invg𝑅)‘𝐴) ≠ 0 ) ↔ (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))
9086, 89sylibr 235 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((1r𝑅) ≠ 0 ∨ ((invg𝑅)‘𝐴) ≠ 0 ))
91 fvexd 6679 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (1r𝑅) ∈ V)
92 fvpr1g 6947 . . . . . . . . 9 ((𝑋𝐵 ∧ (1r𝑅) ∈ V ∧ 𝑋𝑌) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) = (1r𝑅))
9341, 91, 8, 92syl3anc 1363 . . . . . . . 8 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) = (1r𝑅))
9493neeq1d 3075 . . . . . . 7 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ↔ (1r𝑅) ≠ 0 ))
95 fvexd 6679 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((invg𝑅)‘𝐴) ∈ V)
96 fvpr2g 6948 . . . . . . . . 9 ((𝑌𝐵 ∧ ((invg𝑅)‘𝐴) ∈ V ∧ 𝑋𝑌) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) = ((invg𝑅)‘𝐴))
9727, 95, 8, 96syl3anc 1363 . . . . . . . 8 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) = ((invg𝑅)‘𝐴))
9897neeq1d 3075 . . . . . . 7 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 ↔ ((invg𝑅)‘𝐴) ≠ 0 ))
9994, 98orbi12d 912 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ∨ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 ) ↔ ((1r𝑅) ≠ 0 ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
10090, 99mpbird 258 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ∨ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 ))
101 fveq2 6664 . . . . . . . 8 (𝑣 = 𝑋 → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) = ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋))
102101neeq1d 3075 . . . . . . 7 (𝑣 = 𝑋 → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ))
103 fveq2 6664 . . . . . . . 8 (𝑣 = 𝑌 → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) = ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌))
104103neeq1d 3075 . . . . . . 7 (𝑣 = 𝑌 → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 ))
105102, 104rexprg 4627 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ↔ (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ∨ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 )))
1062, 105syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ↔ (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ∨ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 )))
107100, 106mpbird 258 . . . 4 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 )
10822adantr 481 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (1r𝑅) ∈ 𝑆)
109108adantr 481 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (1r𝑅) ∈ 𝑆)
11020fvexi 6678 . . . . . . 7 𝑆 ∈ V
1118, 110jctir 521 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑋𝑌𝑆 ∈ V))
11237mapprop 44292 . . . . . 6 (((𝑋𝐵 ∧ (1r𝑅) ∈ 𝑆) ∧ (𝑌𝐵 ∧ ((invg𝑅)‘𝐴) ∈ 𝑆) ∧ (𝑋𝑌𝑆 ∈ V)) → {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ∈ (𝑆m {𝑋, 𝑌}))
11341, 109, 27, 33, 111, 112syl221anc 1373 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ∈ (𝑆m {𝑋, 𝑌}))
114 breq1 5061 . . . . . . 7 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → (𝑓 finSupp 0 ↔ {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} finSupp 0 ))
115 oveq1 7152 . . . . . . . 8 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → (𝑓( linC ‘𝑀){𝑋, 𝑌}) = ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}))
116115eqeq1d 2823 . . . . . . 7 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → ((𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍))
117 fveq1 6663 . . . . . . . . 9 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → (𝑓𝑣) = ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣))
118117neeq1d 3075 . . . . . . . 8 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → ((𝑓𝑣) ≠ 0 ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ))
119118rexbidv 3297 . . . . . . 7 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → (∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 ↔ ∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ))
120114, 116, 1193anbi123d 1427 . . . . . 6 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 ) ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} finSupp 0 ∧ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 )))
121120adantl 482 . . . . 5 ((((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) ∧ 𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 ) ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} finSupp 0 ∧ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 )))
122113, 121rspcedv 3615 . . . 4 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} finSupp 0 ∧ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ) → ∃𝑓 ∈ (𝑆m {𝑋, 𝑌})(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 )))
12316, 49, 107, 122mp3and 1455 . . 3 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ∃𝑓 ∈ (𝑆m {𝑋, 𝑌})(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 ))
124 prelpwi 5331 . . . . . 6 ((𝑋𝐵𝑌𝐵) → {𝑋, 𝑌} ∈ 𝒫 𝐵)
1251243adant3 1124 . . . . 5 ((𝑋𝐵𝑌𝐵𝑋𝑌) → {𝑋, 𝑌} ∈ 𝒫 𝐵)
126125ad2antlr 723 . . . 4 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {𝑋, 𝑌} ∈ 𝒫 𝐵)
12734, 46, 19, 20, 13islindeps 44406 . . . 4 ((𝑀 ∈ LMod ∧ {𝑋, 𝑌} ∈ 𝒫 𝐵) → ({𝑋, 𝑌} linDepS 𝑀 ↔ ∃𝑓 ∈ (𝑆m {𝑋, 𝑌})(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 )))
12840, 126, 127syl2anc 584 . . 3 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ({𝑋, 𝑌} linDepS 𝑀 ↔ ∃𝑓 ∈ (𝑆m {𝑋, 𝑌})(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 )))
129123, 128mpbird 258 . 2 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {𝑋, 𝑌} linDepS 𝑀)
130129ex 413 1 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → {𝑋, 𝑌} linDepS 𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 841  w3a 1079   = wceq 1528  wcel 2105  wne 3016  wrex 3139  Vcvv 3495  𝒫 cpw 4537  {csn 4559  {cpr 4561  cop 4565   class class class wbr 5058  wf 6345  cfv 6349  (class class class)co 7145  m cmap 8396  Fincfn 8498   finSupp cfsupp 8822  Basecbs 16473  +gcplusg 16555  Scalarcsca 16558   ·𝑠 cvsca 16559  0gc0g 16703  Grpcgrp 18043  invgcminusg 18044  1rcur 19182  Ringcrg 19228  LModclmod 19565   linC clinc 44357   linDepS clindeps 44394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-13 2383  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-n0 11887  df-xnn0 11957  df-z 11971  df-uz 12233  df-fz 12883  df-fzo 13024  df-seq 13360  df-hash 13681  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-0g 16705  df-gsum 16706  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17891  df-mnd 17902  df-submnd 17947  df-grp 18046  df-minusg 18047  df-mulg 18165  df-cntz 18387  df-cmn 18839  df-abl 18840  df-mgp 19171  df-ur 19183  df-ring 19230  df-lmod 19567  df-linc 44359  df-lininds 44395  df-lindeps 44397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator