Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldgenpisys Structured version   Visualization version   GIF version

Theorem ldgenpisys 31420
Description: The lambda system 𝐸 generated by a pi-system 𝑇 is also a pi-system. (Contributed by Thierry Arnoux, 18-Jun-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
dynkin.o (𝜑𝑂𝑉)
ldgenpisys.e 𝐸 = {𝑡𝐿𝑇𝑡}
ldgenpisys.1 (𝜑𝑇𝑃)
Assertion
Ref Expression
ldgenpisys (𝜑𝐸𝑃)
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝐿   𝑂,𝑠,𝑡,𝑥   𝑡,𝑃,𝑥,𝑦   𝐿,𝑠   𝑇,𝑠,𝑡,𝑥   𝜑,𝑡,𝑥   𝐸,𝑠,𝑡,𝑥,𝑦   𝑦,𝑂   𝑦,𝑇   𝑥,𝑉   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑠)   𝑃(𝑠)   𝑉(𝑦,𝑡,𝑠)

Proof of Theorem ldgenpisys
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4055 . . . 4 {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))} ⊆ 𝒫 𝒫 𝑂
2 ldgenpisys.e . . . . . 6 𝐸 = {𝑡𝐿𝑇𝑡}
3 dynkin.l . . . . . . 7 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
4 dynkin.o . . . . . . 7 (𝜑𝑂𝑉)
5 ssrab2 4055 . . . . . . . . 9 {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} ⊆ 𝒫 𝒫 𝑂
6 ldgenpisys.1 . . . . . . . . . 10 (𝜑𝑇𝑃)
7 dynkin.p . . . . . . . . . 10 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
86, 7eleqtrdi 2923 . . . . . . . . 9 (𝜑𝑇 ∈ {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠})
95, 8sseldi 3964 . . . . . . . 8 (𝜑𝑇 ∈ 𝒫 𝒫 𝑂)
109elpwid 4552 . . . . . . 7 (𝜑𝑇 ⊆ 𝒫 𝑂)
113, 4, 10ldsysgenld 31414 . . . . . 6 (𝜑 {𝑡𝐿𝑇𝑡} ∈ 𝐿)
122, 11eqeltrid 2917 . . . . 5 (𝜑𝐸𝐿)
1312, 3eleqtrdi 2923 . . . 4 (𝜑𝐸 ∈ {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))})
141, 13sseldi 3964 . . 3 (𝜑𝐸 ∈ 𝒫 𝒫 𝑂)
15 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑎𝐸𝑏𝐸)) → 𝑏𝐸)
16 simprl 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐸𝑏𝐸)) → 𝑎𝐸)
174adantr 483 . . . . . . . . . . 11 ((𝜑𝑎𝐸) → 𝑂𝑉)
186adantr 483 . . . . . . . . . . 11 ((𝜑𝑎𝐸) → 𝑇𝑃)
19 simpr 487 . . . . . . . . . . 11 ((𝜑𝑎𝐸) → 𝑎𝐸)
2010adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝐸) → 𝑇 ⊆ 𝒫 𝑂)
2120sselda 3966 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝑏 ∈ 𝒫 𝑂)
22 incom 4177 . . . . . . . . . . . . . . . 16 (𝑏𝑎) = (𝑎𝑏)
234ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝑂𝑉)
246ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝑇𝑃)
25 simpr 487 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝑏𝑇)
267, 3, 23, 2, 24, 25ldgenpisyslem3 31419 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝐸 ⊆ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑏𝑐) ∈ 𝐸})
27 simplr 767 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝑎𝐸)
2826, 27sseldd 3967 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝑎 ∈ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑏𝑐) ∈ 𝐸})
29 ineq2 4182 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = 𝑎 → (𝑏𝑐) = (𝑏𝑎))
3029eleq1d 2897 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝑎 → ((𝑏𝑐) ∈ 𝐸 ↔ (𝑏𝑎) ∈ 𝐸))
3130elrab 3679 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑏𝑐) ∈ 𝐸} ↔ (𝑎 ∈ 𝒫 𝑂 ∧ (𝑏𝑎) ∈ 𝐸))
3228, 31sylib 220 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → (𝑎 ∈ 𝒫 𝑂 ∧ (𝑏𝑎) ∈ 𝐸))
3332simprd 498 . . . . . . . . . . . . . . . 16 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → (𝑏𝑎) ∈ 𝐸)
3422, 33eqeltrrid 2918 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → (𝑎𝑏) ∈ 𝐸)
3521, 34jca 514 . . . . . . . . . . . . . 14 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → (𝑏 ∈ 𝒫 𝑂 ∧ (𝑎𝑏) ∈ 𝐸))
36 ineq2 4182 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑏 → (𝑎𝑐) = (𝑎𝑏))
3736eleq1d 2897 . . . . . . . . . . . . . . 15 (𝑐 = 𝑏 → ((𝑎𝑐) ∈ 𝐸 ↔ (𝑎𝑏) ∈ 𝐸))
3837elrab 3679 . . . . . . . . . . . . . 14 (𝑏 ∈ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎𝑐) ∈ 𝐸} ↔ (𝑏 ∈ 𝒫 𝑂 ∧ (𝑎𝑏) ∈ 𝐸))
3935, 38sylibr 236 . . . . . . . . . . . . 13 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝑏 ∈ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎𝑐) ∈ 𝐸})
4039ex 415 . . . . . . . . . . . 12 ((𝜑𝑎𝐸) → (𝑏𝑇𝑏 ∈ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎𝑐) ∈ 𝐸}))
4140ssrdv 3972 . . . . . . . . . . 11 ((𝜑𝑎𝐸) → 𝑇 ⊆ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎𝑐) ∈ 𝐸})
427, 3, 17, 2, 18, 19, 41ldgenpisyslem2 31418 . . . . . . . . . 10 ((𝜑𝑎𝐸) → 𝐸 ⊆ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎𝑐) ∈ 𝐸})
4316, 42syldan 593 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐸𝑏𝐸)) → 𝐸 ⊆ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎𝑐) ∈ 𝐸})
44 ssrab 4048 . . . . . . . . 9 (𝐸 ⊆ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎𝑐) ∈ 𝐸} ↔ (𝐸 ⊆ 𝒫 𝑂 ∧ ∀𝑐𝐸 (𝑎𝑐) ∈ 𝐸))
4543, 44sylib 220 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐸𝑏𝐸)) → (𝐸 ⊆ 𝒫 𝑂 ∧ ∀𝑐𝐸 (𝑎𝑐) ∈ 𝐸))
4645simprd 498 . . . . . . 7 ((𝜑 ∧ (𝑎𝐸𝑏𝐸)) → ∀𝑐𝐸 (𝑎𝑐) ∈ 𝐸)
4737rspcv 3617 . . . . . . 7 (𝑏𝐸 → (∀𝑐𝐸 (𝑎𝑐) ∈ 𝐸 → (𝑎𝑏) ∈ 𝐸))
4815, 46, 47sylc 65 . . . . . 6 ((𝜑 ∧ (𝑎𝐸𝑏𝐸)) → (𝑎𝑏) ∈ 𝐸)
4948ralrimivva 3191 . . . . 5 (𝜑 → ∀𝑎𝐸𝑏𝐸 (𝑎𝑏) ∈ 𝐸)
50 inficl 8883 . . . . . 6 (𝐸𝐿 → (∀𝑎𝐸𝑏𝐸 (𝑎𝑏) ∈ 𝐸 ↔ (fi‘𝐸) = 𝐸))
5112, 50syl 17 . . . . 5 (𝜑 → (∀𝑎𝐸𝑏𝐸 (𝑎𝑏) ∈ 𝐸 ↔ (fi‘𝐸) = 𝐸))
5249, 51mpbid 234 . . . 4 (𝜑 → (fi‘𝐸) = 𝐸)
53 eqimss 4022 . . . 4 ((fi‘𝐸) = 𝐸 → (fi‘𝐸) ⊆ 𝐸)
5452, 53syl 17 . . 3 (𝜑 → (fi‘𝐸) ⊆ 𝐸)
5514, 54jca 514 . 2 (𝜑 → (𝐸 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝐸) ⊆ 𝐸))
567ispisys 31406 . 2 (𝐸𝑃 ↔ (𝐸 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝐸) ⊆ 𝐸))
5755, 56sylibr 236 1 (𝜑𝐸𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  {crab 3142  cdif 3932  cin 3934  wss 3935  c0 4290  𝒫 cpw 4538   cuni 4831   cint 4868  Disj wdisj 5023   class class class wbr 5058  cfv 6349  ωcom 7574  cdom 8501  ficfi 8868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-ac2 9879
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-oi 8968  df-dju 9324  df-card 9362  df-acn 9365  df-ac 9536  df-siga 31363
This theorem is referenced by:  dynkin  31421
  Copyright terms: Public domain W3C validator