Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldgenpisyslem1 Structured version   Visualization version   GIF version

Theorem ldgenpisyslem1 30556
Description: Lemma for ldgenpisys 30559. (Contributed by Thierry Arnoux, 29-Jun-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
dynkin.o (𝜑𝑂𝑉)
ldgenpisys.e 𝐸 = {𝑡𝐿𝑇𝑡}
ldgenpisys.1 (𝜑𝑇𝑃)
ldgenpisyslem1.1 (𝜑𝐴𝐸)
Assertion
Ref Expression
ldgenpisyslem1 (𝜑 → {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝐿)
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝐿   𝑂,𝑠,𝑡,𝑥   𝑡,𝑃,𝑥,𝑦   𝐿,𝑠   𝑇,𝑠,𝑡,𝑥   𝜑,𝑡,𝑥   𝑠,𝑏,𝑥,𝐴,𝑡,𝑦   𝐸,𝑏,𝑠,𝑡,𝑥,𝑦   𝑂,𝑏,𝑦   𝑥,𝑉   𝑦,𝑇   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑠,𝑏)   𝑃(𝑠,𝑏)   𝑇(𝑏)   𝐿(𝑏)   𝑉(𝑦,𝑡,𝑠,𝑏)

Proof of Theorem ldgenpisyslem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3828 . . 3 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ⊆ 𝒫 𝑂
2 dynkin.o . . . 4 (𝜑𝑂𝑉)
3 pwexg 4999 . . . 4 (𝑂𝑉 → 𝒫 𝑂 ∈ V)
4 rabexg 4963 . . . 4 (𝒫 𝑂 ∈ V → {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ V)
5 elpwg 4310 . . . 4 ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ V → ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝒫 𝒫 𝑂 ↔ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ⊆ 𝒫 𝑂))
62, 3, 4, 54syl 19 . . 3 (𝜑 → ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝒫 𝒫 𝑂 ↔ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ⊆ 𝒫 𝑂))
71, 6mpbiri 248 . 2 (𝜑 → {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝒫 𝒫 𝑂)
8 0elpw 4983 . . . . 5 ∅ ∈ 𝒫 𝑂
98a1i 11 . . . 4 (𝜑 → ∅ ∈ 𝒫 𝑂)
10 dynkin.l . . . . . . . . . . . 12 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
1110isldsys 30549 . . . . . . . . . . 11 (𝑡𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
1211simprbi 483 . . . . . . . . . 10 (𝑡𝐿 → (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)))
1312simp1d 1137 . . . . . . . . 9 (𝑡𝐿 → ∅ ∈ 𝑡)
1413ad2antlr 765 . . . . . . . 8 (((𝜑𝑡𝐿) ∧ 𝑇𝑡) → ∅ ∈ 𝑡)
1514ex 449 . . . . . . 7 ((𝜑𝑡𝐿) → (𝑇𝑡 → ∅ ∈ 𝑡))
1615ralrimiva 3104 . . . . . 6 (𝜑 → ∀𝑡𝐿 (𝑇𝑡 → ∅ ∈ 𝑡))
17 0ex 4942 . . . . . . 7 ∅ ∈ V
1817elintrab 4640 . . . . . 6 (∅ ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → ∅ ∈ 𝑡))
1916, 18sylibr 224 . . . . 5 (𝜑 → ∅ ∈ {𝑡𝐿𝑇𝑡})
20 in0 4111 . . . . 5 (𝐴 ∩ ∅) = ∅
21 ldgenpisys.e . . . . 5 𝐸 = {𝑡𝐿𝑇𝑡}
2219, 20, 213eltr4g 2856 . . . 4 (𝜑 → (𝐴 ∩ ∅) ∈ 𝐸)
23 ineq2 3951 . . . . . 6 (𝑏 = ∅ → (𝐴𝑏) = (𝐴 ∩ ∅))
2423eleq1d 2824 . . . . 5 (𝑏 = ∅ → ((𝐴𝑏) ∈ 𝐸 ↔ (𝐴 ∩ ∅) ∈ 𝐸))
2524elrab 3504 . . . 4 (∅ ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ↔ (∅ ∈ 𝒫 𝑂 ∧ (𝐴 ∩ ∅) ∈ 𝐸))
269, 22, 25sylanbrc 701 . . 3 (𝜑 → ∅ ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
27 ineq2 3951 . . . . . . . 8 (𝑏 = 𝑥 → (𝐴𝑏) = (𝐴𝑥))
2827eleq1d 2824 . . . . . . 7 (𝑏 = 𝑥 → ((𝐴𝑏) ∈ 𝐸 ↔ (𝐴𝑥) ∈ 𝐸))
2928elrab 3504 . . . . . 6 (𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ↔ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸))
30 pwidg 4317 . . . . . . . . . 10 (𝑂𝑉𝑂 ∈ 𝒫 𝑂)
312, 30syl 17 . . . . . . . . 9 (𝜑𝑂 ∈ 𝒫 𝑂)
3231adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → 𝑂 ∈ 𝒫 𝑂)
3332elpwdifcl 29686 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → (𝑂𝑥) ∈ 𝒫 𝑂)
3410pwldsys 30550 . . . . . . . . . . . . . . . . . . 19 (𝑂𝑉 → 𝒫 𝑂𝐿)
352, 34syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → 𝒫 𝑂𝐿)
36 ldgenpisys.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑇𝑃)
37 dynkin.p . . . . . . . . . . . . . . . . . . . . . 22 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
3837ispisys 30545 . . . . . . . . . . . . . . . . . . . . 21 (𝑇𝑃 ↔ (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇))
3936, 38sylib 208 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇))
4039simpld 477 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ 𝒫 𝒫 𝑂)
4140elpwid 4314 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ⊆ 𝒫 𝑂)
42 sseq2 3768 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝒫 𝑂 → (𝑇𝑡𝑇 ⊆ 𝒫 𝑂))
4342intminss 4655 . . . . . . . . . . . . . . . . . 18 ((𝒫 𝑂𝐿𝑇 ⊆ 𝒫 𝑂) → {𝑡𝐿𝑇𝑡} ⊆ 𝒫 𝑂)
4435, 41, 43syl2anc 696 . . . . . . . . . . . . . . . . 17 (𝜑 {𝑡𝐿𝑇𝑡} ⊆ 𝒫 𝑂)
4521, 44syl5eqss 3790 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ⊆ 𝒫 𝑂)
46 ldgenpisyslem1.1 . . . . . . . . . . . . . . . 16 (𝜑𝐴𝐸)
4745, 46sseldd 3745 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ 𝒫 𝑂)
4847elpwid 4314 . . . . . . . . . . . . . 14 (𝜑𝐴𝑂)
4948ad3antrrr 768 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝐴𝑂)
50 difin 4004 . . . . . . . . . . . . . . . 16 (𝐴 ∖ (𝐴𝑥)) = (𝐴𝑥)
51 difin2 4033 . . . . . . . . . . . . . . . 16 (𝐴𝑂 → (𝐴𝑥) = ((𝑂𝑥) ∩ 𝐴))
5250, 51syl5eq 2806 . . . . . . . . . . . . . . 15 (𝐴𝑂 → (𝐴 ∖ (𝐴𝑥)) = ((𝑂𝑥) ∩ 𝐴))
53 incom 3948 . . . . . . . . . . . . . . 15 ((𝑂𝑥) ∩ 𝐴) = (𝐴 ∩ (𝑂𝑥))
5452, 53syl6eq 2810 . . . . . . . . . . . . . 14 (𝐴𝑂 → (𝐴 ∖ (𝐴𝑥)) = (𝐴 ∩ (𝑂𝑥)))
55 difuncomp 29697 . . . . . . . . . . . . . 14 (𝐴𝑂 → (𝐴 ∖ (𝐴𝑥)) = (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))))
5654, 55eqtr3d 2796 . . . . . . . . . . . . 13 (𝐴𝑂 → (𝐴 ∩ (𝑂𝑥)) = (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))))
5749, 56syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴 ∩ (𝑂𝑥)) = (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))))
58 difeq2 3865 . . . . . . . . . . . . . 14 (𝑦 = ((𝑂𝐴) ∪ (𝐴𝑥)) → (𝑂𝑦) = (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))))
5958eleq1d 2824 . . . . . . . . . . . . 13 (𝑦 = ((𝑂𝐴) ∪ (𝐴𝑥)) → ((𝑂𝑦) ∈ 𝑡 ↔ (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))) ∈ 𝑡))
6012simp2d 1138 . . . . . . . . . . . . . . 15 (𝑡𝐿 → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
6160ad2antlr 765 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
62 difeq2 3865 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑂𝑥) = (𝑂𝑦))
6362eleq1d 2824 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((𝑂𝑥) ∈ 𝑡 ↔ (𝑂𝑦) ∈ 𝑡))
6463cbvralv 3310 . . . . . . . . . . . . . 14 (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ↔ ∀𝑦𝑡 (𝑂𝑦) ∈ 𝑡)
6561, 64sylib 208 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ∀𝑦𝑡 (𝑂𝑦) ∈ 𝑡)
66 simplr 809 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝑡𝐿)
6746, 21syl6eleq 2849 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 {𝑡𝐿𝑇𝑡})
68 elintrabg 4641 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝐸 → (𝐴 {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡𝐴𝑡)))
6946, 68syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡𝐴𝑡)))
7067, 69mpbid 222 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑡𝐿 (𝑇𝑡𝐴𝑡))
7170r19.21bi 3070 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝐿) → (𝑇𝑡𝐴𝑡))
7271imp 444 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝐿) ∧ 𝑇𝑡) → 𝐴𝑡)
7372adantllr 757 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝐴𝑡)
74 difeq2 3865 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐴 → (𝑂𝑥) = (𝑂𝐴))
7574eleq1d 2824 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 → ((𝑂𝑥) ∈ 𝑡 ↔ (𝑂𝐴) ∈ 𝑡))
7660adantr 472 . . . . . . . . . . . . . . . 16 ((𝑡𝐿𝐴𝑡) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
77 simpr 479 . . . . . . . . . . . . . . . 16 ((𝑡𝐿𝐴𝑡) → 𝐴𝑡)
7875, 76, 77rspcdva 3455 . . . . . . . . . . . . . . 15 ((𝑡𝐿𝐴𝑡) → (𝑂𝐴) ∈ 𝑡)
7966, 73, 78syl2anc 696 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝑂𝐴) ∈ 𝑡)
80 simpllr 817 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸))
8180simprd 482 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴𝑥) ∈ 𝐸)
8281, 21syl6eleq 2849 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴𝑥) ∈ {𝑡𝐿𝑇𝑡})
83 vex 3343 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
8483inex2 4952 . . . . . . . . . . . . . . . . 17 (𝐴𝑥) ∈ V
85 elintrabg 4641 . . . . . . . . . . . . . . . . 17 ((𝐴𝑥) ∈ V → ((𝐴𝑥) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡)))
8684, 85mp1i 13 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ((𝐴𝑥) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡)))
8782, 86mpbid 222 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡))
88 simpr 479 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝑇𝑡)
89 rspa 3068 . . . . . . . . . . . . . . . 16 ((∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡) ∧ 𝑡𝐿) → (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡))
9089imp 444 . . . . . . . . . . . . . . 15 (((∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴𝑥) ∈ 𝑡)
9187, 66, 88, 90syl21anc 1476 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴𝑥) ∈ 𝑡)
92 incom 3948 . . . . . . . . . . . . . . . 16 ((𝑂𝐴) ∩ (𝐴𝑥)) = ((𝐴𝑥) ∩ (𝑂𝐴))
93 inss1 3976 . . . . . . . . . . . . . . . . 17 (𝐴𝑥) ⊆ 𝐴
94 disjdif 4184 . . . . . . . . . . . . . . . . 17 (𝐴 ∩ (𝑂𝐴)) = ∅
95 ssdisj 4170 . . . . . . . . . . . . . . . . 17 (((𝐴𝑥) ⊆ 𝐴 ∧ (𝐴 ∩ (𝑂𝐴)) = ∅) → ((𝐴𝑥) ∩ (𝑂𝐴)) = ∅)
9693, 94, 95mp2an 710 . . . . . . . . . . . . . . . 16 ((𝐴𝑥) ∩ (𝑂𝐴)) = ∅
9792, 96eqtri 2782 . . . . . . . . . . . . . . 15 ((𝑂𝐴) ∩ (𝐴𝑥)) = ∅
9897a1i 11 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ((𝑂𝐴) ∩ (𝐴𝑥)) = ∅)
9910, 66, 79, 91, 98unelldsys 30551 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ((𝑂𝐴) ∪ (𝐴𝑥)) ∈ 𝑡)
10059, 65, 99rspcdva 3455 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))) ∈ 𝑡)
10157, 100eqeltrd 2839 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴 ∩ (𝑂𝑥)) ∈ 𝑡)
102101ex 449 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) → (𝑇𝑡 → (𝐴 ∩ (𝑂𝑥)) ∈ 𝑡))
103102ralrimiva 3104 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → ∀𝑡𝐿 (𝑇𝑡 → (𝐴 ∩ (𝑂𝑥)) ∈ 𝑡))
104 inex1g 4953 . . . . . . . . . . . 12 (𝐴𝐸 → (𝐴 ∩ (𝑂𝑥)) ∈ V)
10546, 104syl 17 . . . . . . . . . . 11 (𝜑 → (𝐴 ∩ (𝑂𝑥)) ∈ V)
106105adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → (𝐴 ∩ (𝑂𝑥)) ∈ V)
107 elintrabg 4641 . . . . . . . . . 10 ((𝐴 ∩ (𝑂𝑥)) ∈ V → ((𝐴 ∩ (𝑂𝑥)) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴 ∩ (𝑂𝑥)) ∈ 𝑡)))
108106, 107syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → ((𝐴 ∩ (𝑂𝑥)) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴 ∩ (𝑂𝑥)) ∈ 𝑡)))
109103, 108mpbird 247 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → (𝐴 ∩ (𝑂𝑥)) ∈ {𝑡𝐿𝑇𝑡})
110109, 21syl6eleqr 2850 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → (𝐴 ∩ (𝑂𝑥)) ∈ 𝐸)
11133, 110jca 555 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → ((𝑂𝑥) ∈ 𝒫 𝑂 ∧ (𝐴 ∩ (𝑂𝑥)) ∈ 𝐸))
11229, 111sylan2b 493 . . . . 5 ((𝜑𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) → ((𝑂𝑥) ∈ 𝒫 𝑂 ∧ (𝐴 ∩ (𝑂𝑥)) ∈ 𝐸))
113 ineq2 3951 . . . . . . 7 (𝑏 = (𝑂𝑥) → (𝐴𝑏) = (𝐴 ∩ (𝑂𝑥)))
114113eleq1d 2824 . . . . . 6 (𝑏 = (𝑂𝑥) → ((𝐴𝑏) ∈ 𝐸 ↔ (𝐴 ∩ (𝑂𝑥)) ∈ 𝐸))
115114elrab 3504 . . . . 5 ((𝑂𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ↔ ((𝑂𝑥) ∈ 𝒫 𝑂 ∧ (𝐴 ∩ (𝑂𝑥)) ∈ 𝐸))
116112, 115sylibr 224 . . . 4 ((𝜑𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) → (𝑂𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
117116ralrimiva 3104 . . 3 (𝜑 → ∀𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} (𝑂𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
1182ad2antrr 764 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑂𝑉)
119 sspwb 5066 . . . . . . . . 9 ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ⊆ 𝒫 𝑂 ↔ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ⊆ 𝒫 𝒫 𝑂)
1201, 119mpbi 220 . . . . . . . 8 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ⊆ 𝒫 𝒫 𝑂
121 simplr 809 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
122120, 121sseldi 3742 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝒫 𝑂)
123118, 122elpwunicl 29699 . . . . . 6 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝑂)
124 uniin2 29696 . . . . . . . . . . . 12 𝑦𝑥 (𝐴𝑦) = (𝐴 𝑥)
125 vex 3343 . . . . . . . . . . . . . 14 𝑦 ∈ V
126125inex2 4952 . . . . . . . . . . . . 13 (𝐴𝑦) ∈ V
127126dfiun3 5535 . . . . . . . . . . . 12 𝑦𝑥 (𝐴𝑦) = ran (𝑦𝑥 ↦ (𝐴𝑦))
128124, 127eqtr3i 2784 . . . . . . . . . . 11 (𝐴 𝑥) = ran (𝑦𝑥 ↦ (𝐴𝑦))
129 simplr 809 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝑡𝐿)
130 nfv 1992 . . . . . . . . . . . . . . . . . 18 𝑦(𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
131 nfv 1992 . . . . . . . . . . . . . . . . . . 19 𝑦 𝑥 ≼ ω
132 nfdisj1 4785 . . . . . . . . . . . . . . . . . . 19 𝑦Disj 𝑦𝑥 𝑦
133131, 132nfan 1977 . . . . . . . . . . . . . . . . . 18 𝑦(𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)
134130, 133nfan 1977 . . . . . . . . . . . . . . . . 17 𝑦((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦))
135 nfv 1992 . . . . . . . . . . . . . . . . 17 𝑦 𝑡𝐿
136134, 135nfan 1977 . . . . . . . . . . . . . . . 16 𝑦(((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿)
137 nfv 1992 . . . . . . . . . . . . . . . 16 𝑦 𝑇𝑡
138136, 137nfan 1977 . . . . . . . . . . . . . . 15 𝑦((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡)
139 elpwi 4312 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} → 𝑥 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
140139ad4antlr 773 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝑥 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
141140sselda 3744 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) ∧ 𝑦𝑥) → 𝑦 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
142 ineq2 3951 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = 𝑦 → (𝐴𝑏) = (𝐴𝑦))
143142eleq1d 2824 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑦 → ((𝐴𝑏) ∈ 𝐸 ↔ (𝐴𝑦) ∈ 𝐸))
144143elrab 3504 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ↔ (𝑦 ∈ 𝒫 𝑂 ∧ (𝐴𝑦) ∈ 𝐸))
145144simprbi 483 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} → (𝐴𝑦) ∈ 𝐸)
146141, 145syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) ∧ 𝑦𝑥) → (𝐴𝑦) ∈ 𝐸)
147 simpllr 817 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) ∧ 𝑦𝑥) → 𝑡𝐿)
148 simplr 809 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) ∧ 𝑦𝑥) → 𝑇𝑡)
14921eleq2i 2831 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑦) ∈ 𝐸 ↔ (𝐴𝑦) ∈ {𝑡𝐿𝑇𝑡})
150126elintrab 4640 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑦) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑦) ∈ 𝑡))
151149, 150bitri 264 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑦) ∈ 𝐸 ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑦) ∈ 𝑡))
152 rspa 3068 . . . . . . . . . . . . . . . . . . 19 ((∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑦) ∈ 𝑡) ∧ 𝑡𝐿) → (𝑇𝑡 → (𝐴𝑦) ∈ 𝑡))
153151, 152sylanb 490 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑦) ∈ 𝐸𝑡𝐿) → (𝑇𝑡 → (𝐴𝑦) ∈ 𝑡))
154153imp 444 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑦) ∈ 𝐸𝑡𝐿) ∧ 𝑇𝑡) → (𝐴𝑦) ∈ 𝑡)
155146, 147, 148, 154syl21anc 1476 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) ∧ 𝑦𝑥) → (𝐴𝑦) ∈ 𝑡)
156155ex 449 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝑦𝑥 → (𝐴𝑦) ∈ 𝑡))
157138, 156ralrimi 3095 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ∀𝑦𝑥 (𝐴𝑦) ∈ 𝑡)
158 eqid 2760 . . . . . . . . . . . . . . 15 (𝑦𝑥 ↦ (𝐴𝑦)) = (𝑦𝑥 ↦ (𝐴𝑦))
159158rnmptss 6556 . . . . . . . . . . . . . 14 (∀𝑦𝑥 (𝐴𝑦) ∈ 𝑡 → ran (𝑦𝑥 ↦ (𝐴𝑦)) ⊆ 𝑡)
160157, 159syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ⊆ 𝑡)
161129, 160sselpwd 4959 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡)
162 simpllr 817 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦))
163162simpld 477 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝑥 ≼ ω)
164 1stcrestlem 21477 . . . . . . . . . . . . 13 (𝑥 ≼ ω → ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω)
165163, 164syl 17 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω)
166162simprd 482 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → Disj 𝑦𝑥 𝑦)
167 disjin2 29728 . . . . . . . . . . . . . 14 (Disj 𝑦𝑥 𝑦Disj 𝑦𝑥 (𝐴𝑦))
168 disjrnmpt 29726 . . . . . . . . . . . . . 14 (Disj 𝑦𝑥 (𝐴𝑦) → Disj 𝑧 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑧)
169166, 167, 1683syl 18 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → Disj 𝑧 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑧)
170 nfmpt1 4899 . . . . . . . . . . . . . . 15 𝑦(𝑦𝑥 ↦ (𝐴𝑦))
171170nfrn 5523 . . . . . . . . . . . . . 14 𝑦ran (𝑦𝑥 ↦ (𝐴𝑦))
172 nfcv 2902 . . . . . . . . . . . . . 14 𝑧𝑦
173 nfcv 2902 . . . . . . . . . . . . . 14 𝑦𝑧
174 id 22 . . . . . . . . . . . . . 14 (𝑦 = 𝑧𝑦 = 𝑧)
175171, 172, 173, 174cbvdisjf 29713 . . . . . . . . . . . . 13 (Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦Disj 𝑧 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑧)
176169, 175sylibr 224 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦)
177 breq1 4807 . . . . . . . . . . . . . . . 16 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → (𝑧 ≼ ω ↔ ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω))
178173, 171disjeq1f 29715 . . . . . . . . . . . . . . . 16 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → (Disj 𝑦𝑧 𝑦Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦))
179177, 178anbi12d 749 . . . . . . . . . . . . . . 15 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → ((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) ↔ (ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦)))
180 unieq 4596 . . . . . . . . . . . . . . . 16 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → 𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)))
181180eleq1d 2824 . . . . . . . . . . . . . . 15 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → ( 𝑧𝑡 ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝑡))
182179, 181imbi12d 333 . . . . . . . . . . . . . 14 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → (((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑡) ↔ ((ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝑡)))
18312simp3d 1139 . . . . . . . . . . . . . . . 16 (𝑡𝐿 → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
184 breq1 4807 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (𝑥 ≼ ω ↔ 𝑧 ≼ ω))
185 disjeq1 4779 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (Disj 𝑦𝑥 𝑦Disj 𝑦𝑧 𝑦))
186184, 185anbi12d 749 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) ↔ (𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦)))
187 unieq 4596 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 𝑥 = 𝑧)
188187eleq1d 2824 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ( 𝑥𝑡 𝑧𝑡))
189186, 188imbi12d 333 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡) ↔ ((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑡)))
190189cbvralv 3310 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡) ↔ ∀𝑧 ∈ 𝒫 𝑡((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑡))
191183, 190sylib 208 . . . . . . . . . . . . . . 15 (𝑡𝐿 → ∀𝑧 ∈ 𝒫 𝑡((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑡))
192191adantr 472 . . . . . . . . . . . . . 14 ((𝑡𝐿 ∧ ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡) → ∀𝑧 ∈ 𝒫 𝑡((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑡))
193 simpr 479 . . . . . . . . . . . . . 14 ((𝑡𝐿 ∧ ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡)
194182, 192, 193rspcdva 3455 . . . . . . . . . . . . 13 ((𝑡𝐿 ∧ ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡) → ((ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝑡))
195194imp 444 . . . . . . . . . . . 12 (((𝑡𝐿 ∧ ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡) ∧ (ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦)) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝑡)
196129, 161, 165, 176, 195syl22anc 1478 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝑡)
197128, 196syl5eqel 2843 . . . . . . . . . 10 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴 𝑥) ∈ 𝑡)
198197ex 449 . . . . . . . . 9 ((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) → (𝑇𝑡 → (𝐴 𝑥) ∈ 𝑡))
199198ralrimiva 3104 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → ∀𝑡𝐿 (𝑇𝑡 → (𝐴 𝑥) ∈ 𝑡))
200 vuniex 7120 . . . . . . . . . 10 𝑥 ∈ V
201200inex2 4952 . . . . . . . . 9 (𝐴 𝑥) ∈ V
202201elintrab 4640 . . . . . . . 8 ((𝐴 𝑥) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴 𝑥) ∈ 𝑡))
203199, 202sylibr 224 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝐴 𝑥) ∈ {𝑡𝐿𝑇𝑡})
204203, 21syl6eleqr 2850 . . . . . 6 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝐴 𝑥) ∈ 𝐸)
205 ineq2 3951 . . . . . . . 8 (𝑏 = 𝑥 → (𝐴𝑏) = (𝐴 𝑥))
206205eleq1d 2824 . . . . . . 7 (𝑏 = 𝑥 → ((𝐴𝑏) ∈ 𝐸 ↔ (𝐴 𝑥) ∈ 𝐸))
207206elrab 3504 . . . . . 6 ( 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ↔ ( 𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 𝑥) ∈ 𝐸))
208123, 204, 207sylanbrc 701 . . . . 5 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
209208ex 449 . . . 4 ((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}))
210209ralrimiva 3104 . . 3 (𝜑 → ∀𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}))
21126, 117, 2103jca 1123 . 2 (𝜑 → (∅ ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∧ ∀𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} (𝑂𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∧ ∀𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})))
21210isldsys 30549 . 2 ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝐿 ↔ ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∧ ∀𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} (𝑂𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∧ ∀𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}))))
2137, 211, 212sylanbrc 701 1 (𝜑 → {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  {crab 3054  Vcvv 3340  cdif 3712  cun 3713  cin 3714  wss 3715  c0 4058  𝒫 cpw 4302   cuni 4588   cint 4627   ciun 4672  Disj wdisj 4772   class class class wbr 4804  cmpt 4881  ran crn 5267  cfv 6049  ωcom 7231  cdom 8121  ficfi 8483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-disj 4773  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-oi 8582  df-card 8975  df-acn 8978  df-cda 9202
This theorem is referenced by:  ldgenpisyslem2  30557
  Copyright terms: Public domain W3C validator