Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilfset Structured version   Visualization version   GIF version

Theorem ldilfset 34206
Description: The mapping from fiducial co-atom 𝑤 to its set of lattice dilations. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ldilset.b 𝐵 = (Base‘𝐾)
ldilset.l = (le‘𝐾)
ldilset.h 𝐻 = (LHyp‘𝐾)
ldilset.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
ldilfset (𝐾𝐶 → (LDil‘𝐾) = (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)}))
Distinct variable groups:   𝑥,𝐵   𝑤,𝐻   𝑓,𝐼   𝑤,𝑓,𝑥,𝐾
Allowed substitution hints:   𝐵(𝑤,𝑓)   𝐶(𝑥,𝑤,𝑓)   𝐻(𝑥,𝑓)   𝐼(𝑥,𝑤)   (𝑥,𝑤,𝑓)

Proof of Theorem ldilfset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3185 . 2 (𝐾𝐶𝐾 ∈ V)
2 fveq2 6088 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 ldilset.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3syl6eqr 2662 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6088 . . . . . 6 (𝑘 = 𝐾 → (LAut‘𝑘) = (LAut‘𝐾))
6 ldilset.i . . . . . 6 𝐼 = (LAut‘𝐾)
75, 6syl6eqr 2662 . . . . 5 (𝑘 = 𝐾 → (LAut‘𝑘) = 𝐼)
8 fveq2 6088 . . . . . . 7 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
9 ldilset.b . . . . . . 7 𝐵 = (Base‘𝐾)
108, 9syl6eqr 2662 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
11 fveq2 6088 . . . . . . . . 9 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
12 ldilset.l . . . . . . . . 9 = (le‘𝐾)
1311, 12syl6eqr 2662 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = )
1413breqd 4589 . . . . . . 7 (𝑘 = 𝐾 → (𝑥(le‘𝑘)𝑤𝑥 𝑤))
1514imbi1d 330 . . . . . 6 (𝑘 = 𝐾 → ((𝑥(le‘𝑘)𝑤 → (𝑓𝑥) = 𝑥) ↔ (𝑥 𝑤 → (𝑓𝑥) = 𝑥)))
1610, 15raleqbidv 3129 . . . . 5 (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓𝑥) = 𝑥) ↔ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)))
177, 16rabeqbidv 3168 . . . 4 (𝑘 = 𝐾 → {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓𝑥) = 𝑥)} = {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)})
184, 17mpteq12dv 4658 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓𝑥) = 𝑥)}) = (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)}))
19 df-ldil 34202 . . 3 LDil = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓𝑥) = 𝑥)}))
20 fvex 6098 . . . . 5 (LHyp‘𝐾) ∈ V
213, 20eqeltri 2684 . . . 4 𝐻 ∈ V
2221mptex 6368 . . 3 (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)}) ∈ V
2318, 19, 22fvmpt 6176 . 2 (𝐾 ∈ V → (LDil‘𝐾) = (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)}))
241, 23syl 17 1 (𝐾𝐶 → (LDil‘𝐾) = (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wral 2896  {crab 2900  Vcvv 3173   class class class wbr 4578  cmpt 4638  cfv 5790  Basecbs 15644  lecple 15724  LHypclh 34082  LAutclaut 34083  LDilcldil 34198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pr 4828
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4368  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ldil 34202
This theorem is referenced by:  ldilset  34207
  Copyright terms: Public domain W3C validator