Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldsysgenld Structured version   Visualization version   GIF version

Theorem ldsysgenld 31421
Description: The intersection of all lambda-systems containing a given collection of sets 𝐴, which is called the lambda-system generated by 𝐴, is itself also a lambda-system. (Contributed by Thierry Arnoux, 16-Jun-2020.)
Hypotheses
Ref Expression
isldsys.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
ldsysgenld.1 (𝜑𝑂𝑉)
ldsysgenld.2 (𝜑𝐴 ⊆ 𝒫 𝑂)
Assertion
Ref Expression
ldsysgenld (𝜑 {𝑡𝐿𝐴𝑡} ∈ 𝐿)
Distinct variable groups:   𝑦,𝑠   𝑡,𝐿   𝑂,𝑠,𝑡,𝑥   𝑥,𝑉   𝑦,𝑡   𝐴,𝑠,𝑡,𝑥   𝐿,𝑠,𝑥   𝜑,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑠)   𝐴(𝑦)   𝐿(𝑦)   𝑂(𝑦)   𝑉(𝑦,𝑡,𝑠)

Proof of Theorem ldsysgenld
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ldsysgenld.1 . . . . 5 (𝜑𝑂𝑉)
2 pwsiga 31391 . . . . 5 (𝑂𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂))
31, 2syl 17 . . . 4 (𝜑 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂))
4 isldsys.l . . . . . . . 8 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
54sigaldsys 31420 . . . . . . 7 (sigAlgebra‘𝑂) ⊆ 𝐿
65, 3sseldi 3967 . . . . . 6 (𝜑 → 𝒫 𝑂𝐿)
7 ldsysgenld.2 . . . . . 6 (𝜑𝐴 ⊆ 𝒫 𝑂)
8 sseq2 3995 . . . . . . 7 (𝑡 = 𝒫 𝑂 → (𝐴𝑡𝐴 ⊆ 𝒫 𝑂))
98elrab 3682 . . . . . 6 (𝒫 𝑂 ∈ {𝑡𝐿𝐴𝑡} ↔ (𝒫 𝑂𝐿𝐴 ⊆ 𝒫 𝑂))
106, 7, 9sylanbrc 585 . . . . 5 (𝜑 → 𝒫 𝑂 ∈ {𝑡𝐿𝐴𝑡})
11 intss1 4893 . . . . 5 (𝒫 𝑂 ∈ {𝑡𝐿𝐴𝑡} → {𝑡𝐿𝐴𝑡} ⊆ 𝒫 𝑂)
1210, 11syl 17 . . . 4 (𝜑 {𝑡𝐿𝐴𝑡} ⊆ 𝒫 𝑂)
133, 12sselpwd 5232 . . 3 (𝜑 {𝑡𝐿𝐴𝑡} ∈ 𝒫 𝒫 𝑂)
144isldsys 31417 . . . . . . . . . 10 (𝑡𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
1514simprbi 499 . . . . . . . . 9 (𝑡𝐿 → (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)))
1615simp1d 1138 . . . . . . . 8 (𝑡𝐿 → ∅ ∈ 𝑡)
1716adantl 484 . . . . . . 7 ((𝜑𝑡𝐿) → ∅ ∈ 𝑡)
1817a1d 25 . . . . . 6 ((𝜑𝑡𝐿) → (𝐴𝑡 → ∅ ∈ 𝑡))
1918ralrimiva 3184 . . . . 5 (𝜑 → ∀𝑡𝐿 (𝐴𝑡 → ∅ ∈ 𝑡))
20 0ex 5213 . . . . . 6 ∅ ∈ V
2120elintrab 4890 . . . . 5 (∅ ∈ {𝑡𝐿𝐴𝑡} ↔ ∀𝑡𝐿 (𝐴𝑡 → ∅ ∈ 𝑡))
2219, 21sylibr 236 . . . 4 (𝜑 → ∅ ∈ {𝑡𝐿𝐴𝑡})
23 nfv 1915 . . . . . . . 8 𝑡𝜑
24 nfcv 2979 . . . . . . . . 9 𝑡𝑥
25 nfrab1 3386 . . . . . . . . . 10 𝑡{𝑡𝐿𝐴𝑡}
2625nfint 4888 . . . . . . . . 9 𝑡 {𝑡𝐿𝐴𝑡}
2724, 26nfel 2994 . . . . . . . 8 𝑡 𝑥 {𝑡𝐿𝐴𝑡}
2823, 27nfan 1900 . . . . . . 7 𝑡(𝜑𝑥 {𝑡𝐿𝐴𝑡})
29 simplr 767 . . . . . . . . . 10 ((((𝜑𝑥 {𝑡𝐿𝐴𝑡}) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝑡𝐿)
30 vex 3499 . . . . . . . . . . . . . . 15 𝑥 ∈ V
3130elintrab 4890 . . . . . . . . . . . . . 14 (𝑥 {𝑡𝐿𝐴𝑡} ↔ ∀𝑡𝐿 (𝐴𝑡𝑥𝑡))
3231biimpi 218 . . . . . . . . . . . . 13 (𝑥 {𝑡𝐿𝐴𝑡} → ∀𝑡𝐿 (𝐴𝑡𝑥𝑡))
3332adantl 484 . . . . . . . . . . . 12 ((𝜑𝑥 {𝑡𝐿𝐴𝑡}) → ∀𝑡𝐿 (𝐴𝑡𝑥𝑡))
3433r19.21bi 3210 . . . . . . . . . . 11 (((𝜑𝑥 {𝑡𝐿𝐴𝑡}) ∧ 𝑡𝐿) → (𝐴𝑡𝑥𝑡))
3534imp 409 . . . . . . . . . 10 ((((𝜑𝑥 {𝑡𝐿𝐴𝑡}) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝑥𝑡)
3615simp2d 1139 . . . . . . . . . . 11 (𝑡𝐿 → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
3736r19.21bi 3210 . . . . . . . . . 10 ((𝑡𝐿𝑥𝑡) → (𝑂𝑥) ∈ 𝑡)
3829, 35, 37syl2anc 586 . . . . . . . . 9 ((((𝜑𝑥 {𝑡𝐿𝐴𝑡}) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → (𝑂𝑥) ∈ 𝑡)
3938ex 415 . . . . . . . 8 (((𝜑𝑥 {𝑡𝐿𝐴𝑡}) ∧ 𝑡𝐿) → (𝐴𝑡 → (𝑂𝑥) ∈ 𝑡))
4039ex 415 . . . . . . 7 ((𝜑𝑥 {𝑡𝐿𝐴𝑡}) → (𝑡𝐿 → (𝐴𝑡 → (𝑂𝑥) ∈ 𝑡)))
4128, 40ralrimi 3218 . . . . . 6 ((𝜑𝑥 {𝑡𝐿𝐴𝑡}) → ∀𝑡𝐿 (𝐴𝑡 → (𝑂𝑥) ∈ 𝑡))
42 difexg 5233 . . . . . . . 8 (𝑂𝑉 → (𝑂𝑥) ∈ V)
43 elintrabg 4891 . . . . . . . 8 ((𝑂𝑥) ∈ V → ((𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡} ↔ ∀𝑡𝐿 (𝐴𝑡 → (𝑂𝑥) ∈ 𝑡)))
441, 42, 433syl 18 . . . . . . 7 (𝜑 → ((𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡} ↔ ∀𝑡𝐿 (𝐴𝑡 → (𝑂𝑥) ∈ 𝑡)))
4544adantr 483 . . . . . 6 ((𝜑𝑥 {𝑡𝐿𝐴𝑡}) → ((𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡} ↔ ∀𝑡𝐿 (𝐴𝑡 → (𝑂𝑥) ∈ 𝑡)))
4641, 45mpbird 259 . . . . 5 ((𝜑𝑥 {𝑡𝐿𝐴𝑡}) → (𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡})
4746ralrimiva 3184 . . . 4 (𝜑 → ∀𝑥 {𝑡𝐿𝐴𝑡} (𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡})
4826nfpw 4562 . . . . . . . . . . 11 𝑡𝒫 {𝑡𝐿𝐴𝑡}
4924, 48nfel 2994 . . . . . . . . . 10 𝑡 𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}
5023, 49nfan 1900 . . . . . . . . 9 𝑡(𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡})
51 nfv 1915 . . . . . . . . 9 𝑡(𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)
5250, 51nfan 1900 . . . . . . . 8 𝑡((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦))
53 simplr 767 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝑡𝐿)
54 simpr 487 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) ∧ 𝑢 {𝑡𝐿𝐴𝑡}) → 𝑢 {𝑡𝐿𝐴𝑡})
55 simpllr 774 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) ∧ 𝑢 {𝑡𝐿𝐴𝑡}) → 𝑡𝐿)
56 simplr 767 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) ∧ 𝑢 {𝑡𝐿𝐴𝑡}) → 𝐴𝑡)
57 vex 3499 . . . . . . . . . . . . . . . . . . . 20 𝑢 ∈ V
5857elintrab 4890 . . . . . . . . . . . . . . . . . . 19 (𝑢 {𝑡𝐿𝐴𝑡} ↔ ∀𝑡𝐿 (𝐴𝑡𝑢𝑡))
5958biimpi 218 . . . . . . . . . . . . . . . . . 18 (𝑢 {𝑡𝐿𝐴𝑡} → ∀𝑡𝐿 (𝐴𝑡𝑢𝑡))
6059r19.21bi 3210 . . . . . . . . . . . . . . . . 17 ((𝑢 {𝑡𝐿𝐴𝑡} ∧ 𝑡𝐿) → (𝐴𝑡𝑢𝑡))
6160imp 409 . . . . . . . . . . . . . . . 16 (((𝑢 {𝑡𝐿𝐴𝑡} ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝑢𝑡)
6254, 55, 56, 61syl21anc 835 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) ∧ 𝑢 {𝑡𝐿𝐴𝑡}) → 𝑢𝑡)
6362ex 415 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → (𝑢 {𝑡𝐿𝐴𝑡} → 𝑢𝑡))
6463ssrdv 3975 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → {𝑡𝐿𝐴𝑡} ⊆ 𝑡)
6564sspwd 4556 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝒫 {𝑡𝐿𝐴𝑡} ⊆ 𝒫 𝑡)
66 simp-4r 782 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡})
6765, 66sseldd 3970 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝑥 ∈ 𝒫 𝑡)
68 simpllr 774 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦))
6915simp3d 1140 . . . . . . . . . . . . 13 (𝑡𝐿 → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
7069r19.21bi 3210 . . . . . . . . . . . 12 ((𝑡𝐿𝑥 ∈ 𝒫 𝑡) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
7170imp 409 . . . . . . . . . . 11 (((𝑡𝐿𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥𝑡)
7253, 67, 68, 71syl21anc 835 . . . . . . . . . 10 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝑥𝑡)
7372ex 415 . . . . . . . . 9 ((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) → (𝐴𝑡 𝑥𝑡))
7473ex 415 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝑡𝐿 → (𝐴𝑡 𝑥𝑡)))
7552, 74ralrimi 3218 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → ∀𝑡𝐿 (𝐴𝑡 𝑥𝑡))
76 vuniex 7467 . . . . . . . 8 𝑥 ∈ V
7776elintrab 4890 . . . . . . 7 ( 𝑥 {𝑡𝐿𝐴𝑡} ↔ ∀𝑡𝐿 (𝐴𝑡 𝑥𝑡))
7875, 77sylibr 236 . . . . . 6 (((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 {𝑡𝐿𝐴𝑡})
7978ex 415 . . . . 5 ((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 {𝑡𝐿𝐴𝑡}))
8079ralrimiva 3184 . . . 4 (𝜑 → ∀𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 {𝑡𝐿𝐴𝑡}))
8122, 47, 803jca 1124 . . 3 (𝜑 → (∅ ∈ {𝑡𝐿𝐴𝑡} ∧ ∀𝑥 {𝑡𝐿𝐴𝑡} (𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡} ∧ ∀𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 {𝑡𝐿𝐴𝑡})))
8213, 81jca 514 . 2 (𝜑 → ( {𝑡𝐿𝐴𝑡} ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ {𝑡𝐿𝐴𝑡} ∧ ∀𝑥 {𝑡𝐿𝐴𝑡} (𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡} ∧ ∀𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 {𝑡𝐿𝐴𝑡}))))
834isldsys 31417 . 2 ( {𝑡𝐿𝐴𝑡} ∈ 𝐿 ↔ ( {𝑡𝐿𝐴𝑡} ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ {𝑡𝐿𝐴𝑡} ∧ ∀𝑥 {𝑡𝐿𝐴𝑡} (𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡} ∧ ∀𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 {𝑡𝐿𝐴𝑡}))))
8482, 83sylibr 236 1 (𝜑 {𝑡𝐿𝐴𝑡} ∈ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  {crab 3144  Vcvv 3496  cdif 3935  wss 3938  c0 4293  𝒫 cpw 4541   cuni 4840   cint 4878  Disj wdisj 5033   class class class wbr 5068  cfv 6357  ωcom 7582  cdom 8509  sigAlgebracsiga 31369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-ac2 9887
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-oi 8976  df-dju 9332  df-card 9370  df-acn 9373  df-ac 9544  df-siga 31370
This theorem is referenced by:  ldgenpisys  31427  dynkin  31428
  Copyright terms: Public domain W3C validator