Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualfvadd Structured version   Visualization version   GIF version

Theorem ldualfvadd 33892
Description: Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
ldualvadd.f 𝐹 = (LFnl‘𝑊)
ldualvadd.r 𝑅 = (Scalar‘𝑊)
ldualvadd.a + = (+g𝑅)
ldualvadd.d 𝐷 = (LDual‘𝑊)
ldualvadd.p = (+g𝐷)
ldualvadd.w (𝜑𝑊𝑋)
ldualfvadd.q = ( ∘𝑓 + ↾ (𝐹 × 𝐹))
Assertion
Ref Expression
ldualfvadd (𝜑 = )

Proof of Theorem ldualfvadd
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 ldualvadd.a . . . 4 + = (+g𝑅)
3 ldualfvadd.q . . . 4 = ( ∘𝑓 + ↾ (𝐹 × 𝐹))
4 ldualvadd.f . . . 4 𝐹 = (LFnl‘𝑊)
5 ldualvadd.d . . . 4 𝐷 = (LDual‘𝑊)
6 ldualvadd.r . . . 4 𝑅 = (Scalar‘𝑊)
7 eqid 2621 . . . 4 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2621 . . . 4 (.r𝑅) = (.r𝑅)
9 eqid 2621 . . . 4 (oppr𝑅) = (oppr𝑅)
10 eqid 2621 . . . 4 (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓𝑓 (.r𝑅)((Base‘𝑊) × {𝑘}))) = (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓𝑓 (.r𝑅)((Base‘𝑊) × {𝑘})))
11 ldualvadd.w . . . 4 (𝜑𝑊𝑋)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ldualset 33889 . . 3 (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓𝑓 (.r𝑅)((Base‘𝑊) × {𝑘})))⟩}))
1312fveq2d 6152 . 2 (𝜑 → (+g𝐷) = (+g‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓𝑓 (.r𝑅)((Base‘𝑊) × {𝑘})))⟩})))
14 ldualvadd.p . 2 = (+g𝐷)
15 fvex 6158 . . . . . 6 (LFnl‘𝑊) ∈ V
164, 15eqeltri 2694 . . . . 5 𝐹 ∈ V
17 id 22 . . . . . 6 (𝐹 ∈ V → 𝐹 ∈ V)
1817, 17ofmresex 7110 . . . . 5 (𝐹 ∈ V → ( ∘𝑓 + ↾ (𝐹 × 𝐹)) ∈ V)
1916, 18ax-mp 5 . . . 4 ( ∘𝑓 + ↾ (𝐹 × 𝐹)) ∈ V
203, 19eqeltri 2694 . . 3 ∈ V
21 eqid 2621 . . . 4 ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓𝑓 (.r𝑅)((Base‘𝑊) × {𝑘})))⟩}) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓𝑓 (.r𝑅)((Base‘𝑊) × {𝑘})))⟩})
2221lmodplusg 15940 . . 3 ( ∈ V → = (+g‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓𝑓 (.r𝑅)((Base‘𝑊) × {𝑘})))⟩})))
2320, 22ax-mp 5 . 2 = (+g‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓𝑓 (.r𝑅)((Base‘𝑊) × {𝑘})))⟩}))
2413, 14, 233eqtr4g 2680 1 (𝜑 = )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  Vcvv 3186  cun 3553  {csn 4148  {ctp 4152  cop 4154   × cxp 5072  cres 5076  cfv 5847  (class class class)co 6604  cmpt2 6606  𝑓 cof 6848  ndxcnx 15778  Basecbs 15781  +gcplusg 15862  .rcmulr 15863  Scalarcsca 15865   ·𝑠 cvsca 15866  opprcoppr 18543  LFnlclfn 33821  LDualcld 33887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-sca 15878  df-vsca 15879  df-ldual 33888
This theorem is referenced by:  ldualvadd  33893
  Copyright terms: Public domain W3C validator