Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualfvadd Structured version   Visualization version   GIF version

Theorem ldualfvadd 34918
Description: Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
ldualvadd.f 𝐹 = (LFnl‘𝑊)
ldualvadd.r 𝑅 = (Scalar‘𝑊)
ldualvadd.a + = (+g𝑅)
ldualvadd.d 𝐷 = (LDual‘𝑊)
ldualvadd.p = (+g𝐷)
ldualvadd.w (𝜑𝑊𝑋)
ldualfvadd.q = ( ∘𝑓 + ↾ (𝐹 × 𝐹))
Assertion
Ref Expression
ldualfvadd (𝜑 = )

Proof of Theorem ldualfvadd
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 ldualvadd.a . . . 4 + = (+g𝑅)
3 ldualfvadd.q . . . 4 = ( ∘𝑓 + ↾ (𝐹 × 𝐹))
4 ldualvadd.f . . . 4 𝐹 = (LFnl‘𝑊)
5 ldualvadd.d . . . 4 𝐷 = (LDual‘𝑊)
6 ldualvadd.r . . . 4 𝑅 = (Scalar‘𝑊)
7 eqid 2760 . . . 4 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2760 . . . 4 (.r𝑅) = (.r𝑅)
9 eqid 2760 . . . 4 (oppr𝑅) = (oppr𝑅)
10 eqid 2760 . . . 4 (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓𝑓 (.r𝑅)((Base‘𝑊) × {𝑘}))) = (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓𝑓 (.r𝑅)((Base‘𝑊) × {𝑘})))
11 ldualvadd.w . . . 4 (𝜑𝑊𝑋)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ldualset 34915 . . 3 (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓𝑓 (.r𝑅)((Base‘𝑊) × {𝑘})))⟩}))
1312fveq2d 6356 . 2 (𝜑 → (+g𝐷) = (+g‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓𝑓 (.r𝑅)((Base‘𝑊) × {𝑘})))⟩})))
14 ldualvadd.p . 2 = (+g𝐷)
15 fvex 6362 . . . . . 6 (LFnl‘𝑊) ∈ V
164, 15eqeltri 2835 . . . . 5 𝐹 ∈ V
17 id 22 . . . . . 6 (𝐹 ∈ V → 𝐹 ∈ V)
1817, 17ofmresex 7330 . . . . 5 (𝐹 ∈ V → ( ∘𝑓 + ↾ (𝐹 × 𝐹)) ∈ V)
1916, 18ax-mp 5 . . . 4 ( ∘𝑓 + ↾ (𝐹 × 𝐹)) ∈ V
203, 19eqeltri 2835 . . 3 ∈ V
21 eqid 2760 . . . 4 ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓𝑓 (.r𝑅)((Base‘𝑊) × {𝑘})))⟩}) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓𝑓 (.r𝑅)((Base‘𝑊) × {𝑘})))⟩})
2221lmodplusg 16221 . . 3 ( ∈ V → = (+g‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓𝑓 (.r𝑅)((Base‘𝑊) × {𝑘})))⟩})))
2320, 22ax-mp 5 . 2 = (+g‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓𝑓 (.r𝑅)((Base‘𝑊) × {𝑘})))⟩}))
2413, 14, 233eqtr4g 2819 1 (𝜑 = )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  Vcvv 3340  cun 3713  {csn 4321  {ctp 4325  cop 4327   × cxp 5264  cres 5268  cfv 6049  (class class class)co 6813  cmpt2 6815  𝑓 cof 7060  ndxcnx 16056  Basecbs 16059  +gcplusg 16143  .rcmulr 16144  Scalarcsca 16146   ·𝑠 cvsca 16147  opprcoppr 18822  LFnlclfn 34847  LDualcld 34913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-plusg 16156  df-sca 16159  df-vsca 16160  df-ldual 34914
This theorem is referenced by:  ldualvadd  34919
  Copyright terms: Public domain W3C validator