Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualgrplem Structured version   Visualization version   GIF version

Theorem ldualgrplem 34251
Description: Lemma for ldualgrp 34252. (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
ldualgrp.d 𝐷 = (LDual‘𝑊)
ldualgrp.w (𝜑𝑊 ∈ LMod)
ldualgrp.v 𝑉 = (Base‘𝑊)
ldualgrp.p + = ∘𝑓 (+g𝑊)
ldualgrp.f 𝐹 = (LFnl‘𝑊)
ldualgrp.r 𝑅 = (Scalar‘𝑊)
ldualgrp.k 𝐾 = (Base‘𝑅)
ldualgrp.t × = (.r𝑅)
ldualgrp.o 𝑂 = (oppr𝑅)
ldualgrp.s · = ( ·𝑠𝐷)
Assertion
Ref Expression
ldualgrplem (𝜑𝐷 ∈ Grp)

Proof of Theorem ldualgrplem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ldualgrp.f . . . 4 𝐹 = (LFnl‘𝑊)
2 ldualgrp.d . . . 4 𝐷 = (LDual‘𝑊)
3 eqid 2620 . . . 4 (Base‘𝐷) = (Base‘𝐷)
4 ldualgrp.w . . . 4 (𝜑𝑊 ∈ LMod)
51, 2, 3, 4ldualvbase 34232 . . 3 (𝜑 → (Base‘𝐷) = 𝐹)
65eqcomd 2626 . 2 (𝜑𝐹 = (Base‘𝐷))
7 eqidd 2621 . 2 (𝜑 → (+g𝐷) = (+g𝐷))
8 eqid 2620 . . 3 (+g𝐷) = (+g𝐷)
943ad2ant1 1080 . . 3 ((𝜑𝑥𝐹𝑦𝐹) → 𝑊 ∈ LMod)
10 simp2 1060 . . 3 ((𝜑𝑥𝐹𝑦𝐹) → 𝑥𝐹)
11 simp3 1061 . . 3 ((𝜑𝑥𝐹𝑦𝐹) → 𝑦𝐹)
121, 2, 8, 9, 10, 11ldualvaddcl 34236 . 2 ((𝜑𝑥𝐹𝑦𝐹) → (𝑥(+g𝐷)𝑦) ∈ 𝐹)
13 ldualgrp.r . . . . 5 𝑅 = (Scalar‘𝑊)
14 eqid 2620 . . . . 5 (+g𝑅) = (+g𝑅)
154adantr 481 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → 𝑊 ∈ LMod)
16 simpr2 1066 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → 𝑦𝐹)
17 simpr3 1067 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → 𝑧𝐹)
181, 13, 14, 2, 8, 15, 16, 17ldualvadd 34235 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → (𝑦(+g𝐷)𝑧) = (𝑦𝑓 (+g𝑅)𝑧))
1918oveq2d 6651 . . 3 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → (𝑥𝑓 (+g𝑅)(𝑦(+g𝐷)𝑧)) = (𝑥𝑓 (+g𝑅)(𝑦𝑓 (+g𝑅)𝑧)))
20 simpr1 1065 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → 𝑥𝐹)
211, 2, 8, 15, 16, 17ldualvaddcl 34236 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → (𝑦(+g𝐷)𝑧) ∈ 𝐹)
221, 13, 14, 2, 8, 15, 20, 21ldualvadd 34235 . . 3 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → (𝑥(+g𝐷)(𝑦(+g𝐷)𝑧)) = (𝑥𝑓 (+g𝑅)(𝑦(+g𝐷)𝑧)))
231, 2, 8, 15, 20, 16ldualvaddcl 34236 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → (𝑥(+g𝐷)𝑦) ∈ 𝐹)
241, 13, 14, 2, 8, 15, 23, 17ldualvadd 34235 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → ((𝑥(+g𝐷)𝑦)(+g𝐷)𝑧) = ((𝑥(+g𝐷)𝑦) ∘𝑓 (+g𝑅)𝑧))
251, 13, 14, 2, 8, 15, 20, 16ldualvadd 34235 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → (𝑥(+g𝐷)𝑦) = (𝑥𝑓 (+g𝑅)𝑦))
2625oveq1d 6650 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → ((𝑥(+g𝐷)𝑦) ∘𝑓 (+g𝑅)𝑧) = ((𝑥𝑓 (+g𝑅)𝑦) ∘𝑓 (+g𝑅)𝑧))
2713, 14, 1, 15, 20, 16, 17lfladdass 34179 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → ((𝑥𝑓 (+g𝑅)𝑦) ∘𝑓 (+g𝑅)𝑧) = (𝑥𝑓 (+g𝑅)(𝑦𝑓 (+g𝑅)𝑧)))
2824, 26, 273eqtrd 2658 . . 3 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → ((𝑥(+g𝐷)𝑦)(+g𝐷)𝑧) = (𝑥𝑓 (+g𝑅)(𝑦𝑓 (+g𝑅)𝑧)))
2919, 22, 283eqtr4rd 2665 . 2 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → ((𝑥(+g𝐷)𝑦)(+g𝐷)𝑧) = (𝑥(+g𝐷)(𝑦(+g𝐷)𝑧)))
30 eqid 2620 . . . 4 (0g𝑅) = (0g𝑅)
31 ldualgrp.v . . . 4 𝑉 = (Base‘𝑊)
3213, 30, 31, 1lfl0f 34175 . . 3 (𝑊 ∈ LMod → (𝑉 × {(0g𝑅)}) ∈ 𝐹)
334, 32syl 17 . 2 (𝜑 → (𝑉 × {(0g𝑅)}) ∈ 𝐹)
344adantr 481 . . . 4 ((𝜑𝑥𝐹) → 𝑊 ∈ LMod)
3533adantr 481 . . . 4 ((𝜑𝑥𝐹) → (𝑉 × {(0g𝑅)}) ∈ 𝐹)
36 simpr 477 . . . 4 ((𝜑𝑥𝐹) → 𝑥𝐹)
371, 13, 14, 2, 8, 34, 35, 36ldualvadd 34235 . . 3 ((𝜑𝑥𝐹) → ((𝑉 × {(0g𝑅)})(+g𝐷)𝑥) = ((𝑉 × {(0g𝑅)}) ∘𝑓 (+g𝑅)𝑥))
3831, 13, 14, 30, 1, 34, 36lfladd0l 34180 . . 3 ((𝜑𝑥𝐹) → ((𝑉 × {(0g𝑅)}) ∘𝑓 (+g𝑅)𝑥) = 𝑥)
3937, 38eqtrd 2654 . 2 ((𝜑𝑥𝐹) → ((𝑉 × {(0g𝑅)})(+g𝐷)𝑥) = 𝑥)
40 eqid 2620 . . 3 (invg𝑅) = (invg𝑅)
41 eqid 2620 . . 3 (𝑧𝑉 ↦ ((invg𝑅)‘(𝑥𝑧))) = (𝑧𝑉 ↦ ((invg𝑅)‘(𝑥𝑧)))
4231, 13, 40, 41, 1, 34, 36lflnegcl 34181 . 2 ((𝜑𝑥𝐹) → (𝑧𝑉 ↦ ((invg𝑅)‘(𝑥𝑧))) ∈ 𝐹)
431, 13, 14, 2, 8, 34, 42, 36ldualvadd 34235 . . 3 ((𝜑𝑥𝐹) → ((𝑧𝑉 ↦ ((invg𝑅)‘(𝑥𝑧)))(+g𝐷)𝑥) = ((𝑧𝑉 ↦ ((invg𝑅)‘(𝑥𝑧))) ∘𝑓 (+g𝑅)𝑥))
4431, 13, 40, 41, 1, 34, 36, 14, 30lflnegl 34182 . . 3 ((𝜑𝑥𝐹) → ((𝑧𝑉 ↦ ((invg𝑅)‘(𝑥𝑧))) ∘𝑓 (+g𝑅)𝑥) = (𝑉 × {(0g𝑅)}))
4543, 44eqtrd 2654 . 2 ((𝜑𝑥𝐹) → ((𝑧𝑉 ↦ ((invg𝑅)‘(𝑥𝑧)))(+g𝐷)𝑥) = (𝑉 × {(0g𝑅)}))
466, 7, 12, 29, 33, 39, 42, 45isgrpd 17425 1 (𝜑𝐷 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1481  wcel 1988  {csn 4168  cmpt 4720   × cxp 5102  cfv 5876  (class class class)co 6635  𝑓 cof 6880  Basecbs 15838  +gcplusg 15922  .rcmulr 15923  Scalarcsca 15925   ·𝑠 cvsca 15926  0gc0g 16081  Grpcgrp 17403  invgcminusg 17404  opprcoppr 18603  LModclmod 18844  LFnlclfn 34163  LDualcld 34229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-n0 11278  df-z 11363  df-uz 11673  df-fz 12312  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-plusg 15935  df-sca 15938  df-vsca 15939  df-0g 16083  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-grp 17406  df-minusg 17407  df-sbg 17408  df-cmn 18176  df-abl 18177  df-mgp 18471  df-ur 18483  df-ring 18530  df-lmod 18846  df-lfl 34164  df-ldual 34230
This theorem is referenced by:  ldualgrp  34252
  Copyright terms: Public domain W3C validator