![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualsca | Structured version Visualization version GIF version |
Description: The ring of scalars of the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
Ref | Expression |
---|---|
ldualsca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
ldualsca.o | ⊢ 𝑂 = (oppr‘𝐹) |
ldualsca.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualsca.r | ⊢ 𝑅 = (Scalar‘𝐷) |
ldualsca.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
Ref | Expression |
---|---|
ldualsca | ⊢ (𝜑 → 𝑅 = 𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2651 | . . . 4 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
3 | eqid 2651 | . . . 4 ⊢ ( ∘𝑓 (+g‘𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊))) = ( ∘𝑓 (+g‘𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊))) | |
4 | eqid 2651 | . . . 4 ⊢ (LFnl‘𝑊) = (LFnl‘𝑊) | |
5 | ldualsca.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
6 | ldualsca.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
7 | eqid 2651 | . . . 4 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
8 | eqid 2651 | . . . 4 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
9 | ldualsca.o | . . . 4 ⊢ 𝑂 = (oppr‘𝐹) | |
10 | eqid 2651 | . . . 4 ⊢ (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓 ∘𝑓 (.r‘𝐹)((Base‘𝑊) × {𝑘}))) = (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓 ∘𝑓 (.r‘𝐹)((Base‘𝑊) × {𝑘}))) | |
11 | ldualsca.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | ldualset 34730 | . . 3 ⊢ (𝜑 → 𝐷 = ({〈(Base‘ndx), (LFnl‘𝑊)〉, 〈(+g‘ndx), ( ∘𝑓 (+g‘𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊)))〉, 〈(Scalar‘ndx), 𝑂〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓 ∘𝑓 (.r‘𝐹)((Base‘𝑊) × {𝑘})))〉})) |
13 | 12 | fveq2d 6233 | . 2 ⊢ (𝜑 → (Scalar‘𝐷) = (Scalar‘({〈(Base‘ndx), (LFnl‘𝑊)〉, 〈(+g‘ndx), ( ∘𝑓 (+g‘𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊)))〉, 〈(Scalar‘ndx), 𝑂〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓 ∘𝑓 (.r‘𝐹)((Base‘𝑊) × {𝑘})))〉}))) |
14 | ldualsca.r | . 2 ⊢ 𝑅 = (Scalar‘𝐷) | |
15 | fvex 6239 | . . . 4 ⊢ (oppr‘𝐹) ∈ V | |
16 | 9, 15 | eqeltri 2726 | . . 3 ⊢ 𝑂 ∈ V |
17 | eqid 2651 | . . . 4 ⊢ ({〈(Base‘ndx), (LFnl‘𝑊)〉, 〈(+g‘ndx), ( ∘𝑓 (+g‘𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊)))〉, 〈(Scalar‘ndx), 𝑂〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓 ∘𝑓 (.r‘𝐹)((Base‘𝑊) × {𝑘})))〉}) = ({〈(Base‘ndx), (LFnl‘𝑊)〉, 〈(+g‘ndx), ( ∘𝑓 (+g‘𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊)))〉, 〈(Scalar‘ndx), 𝑂〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓 ∘𝑓 (.r‘𝐹)((Base‘𝑊) × {𝑘})))〉}) | |
18 | 17 | lmodsca 16067 | . . 3 ⊢ (𝑂 ∈ V → 𝑂 = (Scalar‘({〈(Base‘ndx), (LFnl‘𝑊)〉, 〈(+g‘ndx), ( ∘𝑓 (+g‘𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊)))〉, 〈(Scalar‘ndx), 𝑂〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓 ∘𝑓 (.r‘𝐹)((Base‘𝑊) × {𝑘})))〉}))) |
19 | 16, 18 | ax-mp 5 | . 2 ⊢ 𝑂 = (Scalar‘({〈(Base‘ndx), (LFnl‘𝑊)〉, 〈(+g‘ndx), ( ∘𝑓 (+g‘𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊)))〉, 〈(Scalar‘ndx), 𝑂〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓 ∘𝑓 (.r‘𝐹)((Base‘𝑊) × {𝑘})))〉})) |
20 | 13, 14, 19 | 3eqtr4g 2710 | 1 ⊢ (𝜑 → 𝑅 = 𝑂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∪ cun 3605 {csn 4210 {ctp 4214 〈cop 4216 × cxp 5141 ↾ cres 5145 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 ∘𝑓 cof 6937 ndxcnx 15901 Basecbs 15904 +gcplusg 15988 .rcmulr 15989 Scalarcsca 15991 ·𝑠 cvsca 15992 opprcoppr 18668 LFnlclfn 34662 LDualcld 34728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-plusg 16001 df-sca 16004 df-vsca 16005 df-ldual 34729 |
This theorem is referenced by: ldualsbase 34738 ldualsaddN 34739 ldualsmul 34740 ldual0 34752 ldual1 34753 ldualneg 34754 lduallmodlem 34757 lduallvec 34759 ldualvsub 34760 lcdsca 37205 |
Copyright terms: Public domain | W3C validator |