Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvadd Structured version   Visualization version   GIF version

Theorem ldualvadd 34242
Description: Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
ldualvadd.f 𝐹 = (LFnl‘𝑊)
ldualvadd.r 𝑅 = (Scalar‘𝑊)
ldualvadd.a + = (+g𝑅)
ldualvadd.d 𝐷 = (LDual‘𝑊)
ldualvadd.p = (+g𝐷)
ldualvadd.w (𝜑𝑊𝑋)
ldualvadd.g (𝜑𝐺𝐹)
ldualvadd.h (𝜑𝐻𝐹)
Assertion
Ref Expression
ldualvadd (𝜑 → (𝐺 𝐻) = (𝐺𝑓 + 𝐻))

Proof of Theorem ldualvadd
StepHypRef Expression
1 ldualvadd.f . . . 4 𝐹 = (LFnl‘𝑊)
2 ldualvadd.r . . . 4 𝑅 = (Scalar‘𝑊)
3 ldualvadd.a . . . 4 + = (+g𝑅)
4 ldualvadd.d . . . 4 𝐷 = (LDual‘𝑊)
5 ldualvadd.p . . . 4 = (+g𝐷)
6 ldualvadd.w . . . 4 (𝜑𝑊𝑋)
7 eqid 2621 . . . 4 ( ∘𝑓 + ↾ (𝐹 × 𝐹)) = ( ∘𝑓 + ↾ (𝐹 × 𝐹))
81, 2, 3, 4, 5, 6, 7ldualfvadd 34241 . . 3 (𝜑 = ( ∘𝑓 + ↾ (𝐹 × 𝐹)))
98oveqd 6664 . 2 (𝜑 → (𝐺 𝐻) = (𝐺( ∘𝑓 + ↾ (𝐹 × 𝐹))𝐻))
10 ldualvadd.g . . 3 (𝜑𝐺𝐹)
11 ldualvadd.h . . 3 (𝜑𝐻𝐹)
1210, 11ofmresval 6907 . 2 (𝜑 → (𝐺( ∘𝑓 + ↾ (𝐹 × 𝐹))𝐻) = (𝐺𝑓 + 𝐻))
139, 12eqtrd 2655 1 (𝜑 → (𝐺 𝐻) = (𝐺𝑓 + 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1482  wcel 1989   × cxp 5110  cres 5114  cfv 5886  (class class class)co 6647  𝑓 cof 6892  +gcplusg 15935  Scalarcsca 15938  LFnlclfn 34170  LDualcld 34236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-of 6894  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-n0 11290  df-z 11375  df-uz 11685  df-fz 12324  df-struct 15853  df-ndx 15854  df-slot 15855  df-base 15857  df-plusg 15948  df-sca 15951  df-vsca 15952  df-ldual 34237
This theorem is referenced by:  ldualvaddcl  34243  ldualvaddval  34244  ldualvaddcom  34253  ldualvsdi1  34256  ldualvsdi2  34257  ldualgrplem  34258  ldual0v  34263
  Copyright terms: Public domain W3C validator