![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvs | Structured version Visualization version GIF version |
Description: Scalar product operation value (which is a functional) for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
Ref | Expression |
---|---|
ldualfvs.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldualfvs.v | ⊢ 𝑉 = (Base‘𝑊) |
ldualfvs.r | ⊢ 𝑅 = (Scalar‘𝑊) |
ldualfvs.k | ⊢ 𝐾 = (Base‘𝑅) |
ldualfvs.t | ⊢ × = (.r‘𝑅) |
ldualfvs.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualfvs.s | ⊢ ∙ = ( ·𝑠 ‘𝐷) |
ldualfvs.w | ⊢ (𝜑 → 𝑊 ∈ 𝑌) |
ldualvs.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
ldualvs.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Ref | Expression |
---|---|
ldualvs | ⊢ (𝜑 → (𝑋 ∙ 𝐺) = (𝐺 ∘𝑓 × (𝑉 × {𝑋}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualfvs.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
2 | ldualfvs.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
3 | ldualfvs.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
4 | ldualfvs.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
5 | ldualfvs.t | . . . 4 ⊢ × = (.r‘𝑅) | |
6 | ldualfvs.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
7 | ldualfvs.s | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝐷) | |
8 | ldualfvs.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑌) | |
9 | eqid 2760 | . . . 4 ⊢ (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘𝑓 × (𝑉 × {𝑘}))) = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘𝑓 × (𝑉 × {𝑘}))) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ldualfvs 34944 | . . 3 ⊢ (𝜑 → ∙ = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘𝑓 × (𝑉 × {𝑘})))) |
11 | 10 | oveqd 6831 | . 2 ⊢ (𝜑 → (𝑋 ∙ 𝐺) = (𝑋(𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘𝑓 × (𝑉 × {𝑘})))𝐺)) |
12 | ldualvs.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
13 | ldualvs.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
14 | sneq 4331 | . . . . . 6 ⊢ (𝑘 = 𝑋 → {𝑘} = {𝑋}) | |
15 | 14 | xpeq2d 5296 | . . . . 5 ⊢ (𝑘 = 𝑋 → (𝑉 × {𝑘}) = (𝑉 × {𝑋})) |
16 | 15 | oveq2d 6830 | . . . 4 ⊢ (𝑘 = 𝑋 → (𝑓 ∘𝑓 × (𝑉 × {𝑘})) = (𝑓 ∘𝑓 × (𝑉 × {𝑋}))) |
17 | oveq1 6821 | . . . 4 ⊢ (𝑓 = 𝐺 → (𝑓 ∘𝑓 × (𝑉 × {𝑋})) = (𝐺 ∘𝑓 × (𝑉 × {𝑋}))) | |
18 | ovex 6842 | . . . 4 ⊢ (𝐺 ∘𝑓 × (𝑉 × {𝑋})) ∈ V | |
19 | 16, 17, 9, 18 | ovmpt2 6962 | . . 3 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝐺 ∈ 𝐹) → (𝑋(𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘𝑓 × (𝑉 × {𝑘})))𝐺) = (𝐺 ∘𝑓 × (𝑉 × {𝑋}))) |
20 | 12, 13, 19 | syl2anc 696 | . 2 ⊢ (𝜑 → (𝑋(𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘𝑓 × (𝑉 × {𝑘})))𝐺) = (𝐺 ∘𝑓 × (𝑉 × {𝑋}))) |
21 | 11, 20 | eqtrd 2794 | 1 ⊢ (𝜑 → (𝑋 ∙ 𝐺) = (𝐺 ∘𝑓 × (𝑉 × {𝑋}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 {csn 4321 × cxp 5264 ‘cfv 6049 (class class class)co 6814 ↦ cmpt2 6816 ∘𝑓 cof 7061 Basecbs 16079 .rcmulr 16164 Scalarcsca 16166 ·𝑠 cvsca 16167 LFnlclfn 34865 LDualcld 34931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-of 7063 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-n0 11505 df-z 11590 df-uz 11900 df-fz 12540 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-plusg 16176 df-sca 16179 df-vsca 16180 df-ldual 34932 |
This theorem is referenced by: ldualvsval 34946 ldualvscl 34947 ldualvsass 34949 ldualvsdi1 34951 ldualvsdi2 34952 lduallmodlem 34960 eqlkr4 34973 ldual1dim 34974 ldualkrsc 34975 lkrss 34976 |
Copyright terms: Public domain | W3C validator |