Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsub Structured version   Visualization version   GIF version

Theorem ldualvsub 34760
Description: The value of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
ldualvsub.r 𝑅 = (Scalar‘𝑊)
ldualvsub.n 𝑁 = (invg𝑅)
ldualvsub.u 1 = (1r𝑅)
ldualvsub.f 𝐹 = (LFnl‘𝑊)
ldualvsub.d 𝐷 = (LDual‘𝑊)
ldualvsub.p + = (+g𝐷)
ldualvsub.t · = ( ·𝑠𝐷)
ldualvsub.m = (-g𝐷)
ldualvsub.w (𝜑𝑊 ∈ LMod)
ldualvsub.g (𝜑𝐺𝐹)
ldualvsub.h (𝜑𝐻𝐹)
Assertion
Ref Expression
ldualvsub (𝜑 → (𝐺 𝐻) = (𝐺 + ((𝑁1 ) · 𝐻)))

Proof of Theorem ldualvsub
StepHypRef Expression
1 ldualvsub.d . . . 4 𝐷 = (LDual‘𝑊)
2 ldualvsub.w . . . 4 (𝜑𝑊 ∈ LMod)
31, 2lduallmod 34758 . . 3 (𝜑𝐷 ∈ LMod)
4 ldualvsub.f . . . 4 𝐹 = (LFnl‘𝑊)
5 eqid 2651 . . . 4 (Base‘𝐷) = (Base‘𝐷)
6 ldualvsub.g . . . 4 (𝜑𝐺𝐹)
74, 1, 5, 2, 6ldualelvbase 34732 . . 3 (𝜑𝐺 ∈ (Base‘𝐷))
8 ldualvsub.h . . . 4 (𝜑𝐻𝐹)
94, 1, 5, 2, 8ldualelvbase 34732 . . 3 (𝜑𝐻 ∈ (Base‘𝐷))
10 ldualvsub.p . . . 4 + = (+g𝐷)
11 ldualvsub.m . . . 4 = (-g𝐷)
12 eqid 2651 . . . 4 (Scalar‘𝐷) = (Scalar‘𝐷)
13 ldualvsub.t . . . 4 · = ( ·𝑠𝐷)
14 eqid 2651 . . . 4 (invg‘(Scalar‘𝐷)) = (invg‘(Scalar‘𝐷))
15 eqid 2651 . . . 4 (1r‘(Scalar‘𝐷)) = (1r‘(Scalar‘𝐷))
165, 10, 11, 12, 13, 14, 15lmodvsubval2 18966 . . 3 ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷) ∧ 𝐻 ∈ (Base‘𝐷)) → (𝐺 𝐻) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻)))
173, 7, 9, 16syl3anc 1366 . 2 (𝜑 → (𝐺 𝐻) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻)))
18 ldualvsub.r . . . . . . . 8 𝑅 = (Scalar‘𝑊)
19 eqid 2651 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
2018, 19, 1, 12, 2ldualsca 34737 . . . . . . 7 (𝜑 → (Scalar‘𝐷) = (oppr𝑅))
2120fveq2d 6233 . . . . . 6 (𝜑 → (invg‘(Scalar‘𝐷)) = (invg‘(oppr𝑅)))
22 ldualvsub.n . . . . . . 7 𝑁 = (invg𝑅)
2319, 22opprneg 18681 . . . . . 6 𝑁 = (invg‘(oppr𝑅))
2421, 23syl6reqr 2704 . . . . 5 (𝜑𝑁 = (invg‘(Scalar‘𝐷)))
2520fveq2d 6233 . . . . . 6 (𝜑 → (1r‘(Scalar‘𝐷)) = (1r‘(oppr𝑅)))
26 ldualvsub.u . . . . . . 7 1 = (1r𝑅)
2719, 26oppr1 18680 . . . . . 6 1 = (1r‘(oppr𝑅))
2825, 27syl6reqr 2704 . . . . 5 (𝜑1 = (1r‘(Scalar‘𝐷)))
2924, 28fveq12d 6235 . . . 4 (𝜑 → (𝑁1 ) = ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))))
3029oveq1d 6705 . . 3 (𝜑 → ((𝑁1 ) · 𝐻) = (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻))
3130oveq2d 6706 . 2 (𝜑 → (𝐺 + ((𝑁1 ) · 𝐻)) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻)))
3217, 31eqtr4d 2688 1 (𝜑 → (𝐺 𝐻) = (𝐺 + ((𝑁1 ) · 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  cfv 5926  (class class class)co 6690  Basecbs 15904  +gcplusg 15988  Scalarcsca 15991   ·𝑠 cvsca 15992  invgcminusg 17470  -gcsg 17471  1rcur 18547  opprcoppr 18668  LModclmod 18911  LFnlclfn 34662  LDualcld 34728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-oppr 18669  df-lmod 18913  df-lfl 34663  df-ldual 34729
This theorem is referenced by:  ldualvsubcl  34761  lcfrlem2  37149
  Copyright terms: Public domain W3C validator