MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leabsd Structured version   Visualization version   GIF version

Theorem leabsd 13944
Description: A real number is less than or equal to its absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
Hypothesis
Ref Expression
resqrcld.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
leabsd (𝜑𝐴 ≤ (abs‘𝐴))

Proof of Theorem leabsd
StepHypRef Expression
1 resqrcld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 leabs 13830 . 2 (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴))
31, 2syl 17 1 (𝜑𝐴 ≤ (abs‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1976   class class class wbr 4574  cfv 5787  cr 9788  cle 9928  abscabs 13765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866  ax-pre-sup 9867
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-2nd 7034  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-er 7603  df-en 7816  df-dom 7817  df-sdom 7818  df-sup 8205  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-div 10531  df-nn 10865  df-2 10923  df-3 10924  df-n0 11137  df-z 11208  df-uz 11517  df-rp 11662  df-seq 12616  df-exp 12675  df-cj 13630  df-re 13631  df-im 13632  df-sqrt 13766  df-abs 13767
This theorem is referenced by:  lo1bddrp  14047  o1rlimmul  14140  nm2dif  22176  trirn  22905  mtestbdd  23877  abscxpbnd  24208  cxploglim2  24419  logexprlim  24664  rplogsumlem2  24888  dchrvmasumlem2  24901  dchrvmasumlem3  24902  dchrisum0flblem1  24911  dchrisum0fno1  24914  dchrisum0lem1  24919  mulog2sumlem2  24938  selberglem2  24949  chpdifbndlem1  24956  selberg3lem1  24960  pntrsumo1  24968  pntrlog2bndlem2  24981  pntrlog2bndlem3  24982  leopnmid  28184  dnibndlem7  31447  dnibndlem8  31448  dnibndlem12  31452  bddiblnc  32450  geomcau  32525  radcnvrat  37335  climleltrp  38544  ioodvbdlimc1lem1  38622  ioodvbdlimc1lem2  38623  ioodvbdlimc2lem  38625  fourierdlem77  38877  ioorrnopnlem  39001  sge0isum  39121  hoicvr  39239  smflimlem4  39461  smfmullem1  39477
  Copyright terms: Public domain W3C validator