MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumlem2 Structured version   Visualization version   GIF version

Theorem lebnumlem2 23560
Description: Lemma for lebnum 23562. As a finite sum of point-to-set distance functions, which are continuous by metdscn 23458, the function 𝐹 is also continuous. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
lebnum.j 𝐽 = (MetOpen‘𝐷)
lebnum.d (𝜑𝐷 ∈ (Met‘𝑋))
lebnum.c (𝜑𝐽 ∈ Comp)
lebnum.s (𝜑𝑈𝐽)
lebnum.u (𝜑𝑋 = 𝑈)
lebnumlem1.u (𝜑𝑈 ∈ Fin)
lebnumlem1.n (𝜑 → ¬ 𝑋𝑈)
lebnumlem1.f 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
lebnumlem2.k 𝐾 = (topGen‘ran (,))
Assertion
Ref Expression
lebnumlem2 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑦,𝑘,𝑧,𝐷   𝑘,𝐽,𝑦,𝑧   𝑈,𝑘,𝑦,𝑧   𝜑,𝑘,𝑦,𝑧   𝑘,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧,𝑘)   𝐾(𝑦,𝑧,𝑘)

Proof of Theorem lebnumlem2
StepHypRef Expression
1 lebnumlem1.f . . . 4 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
2 eqid 2821 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3 lebnum.d . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 22938 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
53, 4syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
6 lebnum.j . . . . . . 7 𝐽 = (MetOpen‘𝐷)
76mopntopon 23043 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
85, 7syl 17 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
9 lebnumlem1.u . . . . 5 (𝜑𝑈 ∈ Fin)
103adantr 483 . . . . . 6 ((𝜑𝑘𝑈) → 𝐷 ∈ (Met‘𝑋))
11 difssd 4108 . . . . . 6 ((𝜑𝑘𝑈) → (𝑋𝑘) ⊆ 𝑋)
125adantr 483 . . . . . . . . 9 ((𝜑𝑘𝑈) → 𝐷 ∈ (∞Met‘𝑋))
1312, 7syl 17 . . . . . . . 8 ((𝜑𝑘𝑈) → 𝐽 ∈ (TopOn‘𝑋))
14 lebnum.s . . . . . . . . 9 (𝜑𝑈𝐽)
1514sselda 3966 . . . . . . . 8 ((𝜑𝑘𝑈) → 𝑘𝐽)
16 toponss 21529 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝐽) → 𝑘𝑋)
1713, 15, 16syl2anc 586 . . . . . . 7 ((𝜑𝑘𝑈) → 𝑘𝑋)
18 lebnumlem1.n . . . . . . . . . 10 (𝜑 → ¬ 𝑋𝑈)
19 eleq1 2900 . . . . . . . . . . 11 (𝑘 = 𝑋 → (𝑘𝑈𝑋𝑈))
2019notbid 320 . . . . . . . . . 10 (𝑘 = 𝑋 → (¬ 𝑘𝑈 ↔ ¬ 𝑋𝑈))
2118, 20syl5ibrcom 249 . . . . . . . . 9 (𝜑 → (𝑘 = 𝑋 → ¬ 𝑘𝑈))
2221necon2ad 3031 . . . . . . . 8 (𝜑 → (𝑘𝑈𝑘𝑋))
2322imp 409 . . . . . . 7 ((𝜑𝑘𝑈) → 𝑘𝑋)
24 pssdifn0 4324 . . . . . . 7 ((𝑘𝑋𝑘𝑋) → (𝑋𝑘) ≠ ∅)
2517, 23, 24syl2anc 586 . . . . . 6 ((𝜑𝑘𝑈) → (𝑋𝑘) ≠ ∅)
26 eqid 2821 . . . . . . 7 (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
2726, 6, 2metdscn2 23459 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋𝑘) ⊆ 𝑋 ∧ (𝑋𝑘) ≠ ∅) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
2810, 11, 25, 27syl3anc 1367 . . . . 5 ((𝜑𝑘𝑈) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
292, 8, 9, 28fsumcn 23472 . . . 4 (𝜑 → (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
301, 29eqeltrid 2917 . . 3 (𝜑𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld)))
312cnfldtopon 23385 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3231a1i 11 . . . 4 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
33 lebnum.c . . . . . . 7 (𝜑𝐽 ∈ Comp)
34 lebnum.u . . . . . . 7 (𝜑𝑋 = 𝑈)
356, 3, 33, 14, 34, 9, 18, 1lebnumlem1 23559 . . . . . 6 (𝜑𝐹:𝑋⟶ℝ+)
3635frnd 6515 . . . . 5 (𝜑 → ran 𝐹 ⊆ ℝ+)
37 rpssre 12390 . . . . 5 + ⊆ ℝ
3836, 37sstrdi 3978 . . . 4 (𝜑 → ran 𝐹 ⊆ ℝ)
39 ax-resscn 10588 . . . . 5 ℝ ⊆ ℂ
4039a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
41 cnrest2 21888 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran 𝐹 ⊆ ℝ ∧ ℝ ⊆ ℂ) → (𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ 𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4232, 38, 40, 41syl3anc 1367 . . 3 (𝜑 → (𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ 𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4330, 42mpbid 234 . 2 (𝜑𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
44 lebnumlem2.k . . . 4 𝐾 = (topGen‘ran (,))
452tgioo2 23405 . . . 4 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
4644, 45eqtri 2844 . . 3 𝐾 = ((TopOpen‘ℂfld) ↾t ℝ)
4746oveq2i 7161 . 2 (𝐽 Cn 𝐾) = (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))
4843, 47eleqtrrdi 2924 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  cdif 3932  wss 3935  c0 4290   cuni 4831  cmpt 5138  ran crn 5550  cfv 6349  (class class class)co 7150  Fincfn 8503  infcinf 8899  cc 10529  cr 10530  *cxr 10668   < clt 10669  +crp 12383  (,)cioo 12732  Σcsu 15036  t crest 16688  TopOpenctopn 16689  topGenctg 16705  ∞Metcxmet 20524  Metcmet 20525  MetOpencmopn 20529  fldccnfld 20539  TopOnctopon 21512   Cn ccn 21826  Compccmp 21988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-ec 8285  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-cn 21829  df-cnp 21830  df-tx 22164  df-hmeo 22357  df-xms 22924  df-ms 22925  df-tms 22926
This theorem is referenced by:  lebnumlem3  23561
  Copyright terms: Public domain W3C validator