MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lecldbas Structured version   Visualization version   GIF version

Theorem lecldbas 21829
Description: The set of closed intervals forms a closed subbasis for the topology on the extended reals. Since our definition of a basis is in terms of open sets, we express this by showing that the complements of closed intervals form an open subbasis for the topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
lecldbas.1 𝐹 = (𝑥 ∈ ran [,] ↦ (ℝ*𝑥))
Assertion
Ref Expression
lecldbas (ordTop‘ ≤ ) = (topGen‘(fi‘ran 𝐹))

Proof of Theorem lecldbas
Dummy variables 𝑎 𝑏 𝑐 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . . 4 ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) = ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞))
2 eqid 2823 . . . 4 ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) = ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))
31, 2leordtval2 21822 . . 3 (ordTop‘ ≤ ) = (topGen‘(fi‘(ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)))))
4 fvex 6685 . . . 4 (fi‘ran 𝐹) ∈ V
5 fvex 6685 . . . . . 6 (ordTop‘ ≤ ) ∈ V
6 lecldbas.1 . . . . . . . 8 𝐹 = (𝑥 ∈ ran [,] ↦ (ℝ*𝑥))
7 iccf 12839 . . . . . . . . . . 11 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
8 ffn 6516 . . . . . . . . . . 11 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → [,] Fn (ℝ* × ℝ*))
97, 8ax-mp 5 . . . . . . . . . 10 [,] Fn (ℝ* × ℝ*)
10 ovelrn 7326 . . . . . . . . . 10 ([,] Fn (ℝ* × ℝ*) → (𝑥 ∈ ran [,] ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎[,]𝑏)))
119, 10ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ran [,] ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎[,]𝑏))
12 difeq2 4095 . . . . . . . . . . . 12 (𝑥 = (𝑎[,]𝑏) → (ℝ*𝑥) = (ℝ* ∖ (𝑎[,]𝑏)))
13 iccordt 21824 . . . . . . . . . . . . 13 (𝑎[,]𝑏) ∈ (Clsd‘(ordTop‘ ≤ ))
14 letopuni 21817 . . . . . . . . . . . . . 14 * = (ordTop‘ ≤ )
1514cldopn 21641 . . . . . . . . . . . . 13 ((𝑎[,]𝑏) ∈ (Clsd‘(ordTop‘ ≤ )) → (ℝ* ∖ (𝑎[,]𝑏)) ∈ (ordTop‘ ≤ ))
1613, 15ax-mp 5 . . . . . . . . . . . 12 (ℝ* ∖ (𝑎[,]𝑏)) ∈ (ordTop‘ ≤ )
1712, 16eqeltrdi 2923 . . . . . . . . . . 11 (𝑥 = (𝑎[,]𝑏) → (ℝ*𝑥) ∈ (ordTop‘ ≤ ))
1817rexlimivw 3284 . . . . . . . . . 10 (∃𝑏 ∈ ℝ* 𝑥 = (𝑎[,]𝑏) → (ℝ*𝑥) ∈ (ordTop‘ ≤ ))
1918rexlimivw 3284 . . . . . . . . 9 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎[,]𝑏) → (ℝ*𝑥) ∈ (ordTop‘ ≤ ))
2011, 19sylbi 219 . . . . . . . 8 (𝑥 ∈ ran [,] → (ℝ*𝑥) ∈ (ordTop‘ ≤ ))
216, 20fmpti 6878 . . . . . . 7 𝐹:ran [,]⟶(ordTop‘ ≤ )
22 frn 6522 . . . . . . 7 (𝐹:ran [,]⟶(ordTop‘ ≤ ) → ran 𝐹 ⊆ (ordTop‘ ≤ ))
2321, 22ax-mp 5 . . . . . 6 ran 𝐹 ⊆ (ordTop‘ ≤ )
245, 23ssexi 5228 . . . . 5 ran 𝐹 ∈ V
25 eqid 2823 . . . . . . . 8 (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) = (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞))
26 mnfxr 10700 . . . . . . . . . . 11 -∞ ∈ ℝ*
27 fnovrn 7325 . . . . . . . . . . 11 (([,] Fn (ℝ* × ℝ*) ∧ -∞ ∈ ℝ*𝑦 ∈ ℝ*) → (-∞[,]𝑦) ∈ ran [,])
289, 26, 27mp3an12 1447 . . . . . . . . . 10 (𝑦 ∈ ℝ* → (-∞[,]𝑦) ∈ ran [,])
2926a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → -∞ ∈ ℝ*)
30 id 22 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ*𝑦 ∈ ℝ*)
31 pnfxr 10697 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
3231a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → +∞ ∈ ℝ*)
33 mnfle 12532 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → -∞ ≤ 𝑦)
34 pnfge 12528 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
35 df-icc 12748 . . . . . . . . . . . . . . 15 [,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎𝑐𝑐𝑏)})
36 df-ioc 12746 . . . . . . . . . . . . . . 15 (,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎 < 𝑐𝑐𝑏)})
37 xrltnle 10710 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → (𝑦 < 𝑧 ↔ ¬ 𝑧𝑦))
38 xrletr 12554 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑧𝑦𝑦 ≤ +∞) → 𝑧 ≤ +∞))
39 xrlelttr 12552 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → ((-∞ ≤ 𝑦𝑦 < 𝑧) → -∞ < 𝑧))
40 xrltle 12545 . . . . . . . . . . . . . . . . 17 ((-∞ ∈ ℝ*𝑧 ∈ ℝ*) → (-∞ < 𝑧 → -∞ ≤ 𝑧))
41403adant2 1127 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → (-∞ < 𝑧 → -∞ ≤ 𝑧))
4239, 41syld 47 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → ((-∞ ≤ 𝑦𝑦 < 𝑧) → -∞ ≤ 𝑧))
4335, 36, 37, 35, 38, 42ixxun 12757 . . . . . . . . . . . . . 14 (((-∞ ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ ≤ 𝑦𝑦 ≤ +∞)) → ((-∞[,]𝑦) ∪ (𝑦(,]+∞)) = (-∞[,]+∞))
4429, 30, 32, 33, 34, 43syl32anc 1374 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ((-∞[,]𝑦) ∪ (𝑦(,]+∞)) = (-∞[,]+∞))
45 iccmax 12815 . . . . . . . . . . . . 13 (-∞[,]+∞) = ℝ*
4644, 45syl6eq 2874 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → ((-∞[,]𝑦) ∪ (𝑦(,]+∞)) = ℝ*)
47 iccssxr 12822 . . . . . . . . . . . . 13 (-∞[,]𝑦) ⊆ ℝ*
4835, 36, 37ixxdisj 12756 . . . . . . . . . . . . . 14 ((-∞ ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞[,]𝑦) ∩ (𝑦(,]+∞)) = ∅)
4926, 31, 48mp3an13 1448 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ((-∞[,]𝑦) ∩ (𝑦(,]+∞)) = ∅)
50 uneqdifeq 4440 . . . . . . . . . . . . 13 (((-∞[,]𝑦) ⊆ ℝ* ∧ ((-∞[,]𝑦) ∩ (𝑦(,]+∞)) = ∅) → (((-∞[,]𝑦) ∪ (𝑦(,]+∞)) = ℝ* ↔ (ℝ* ∖ (-∞[,]𝑦)) = (𝑦(,]+∞)))
5147, 49, 50sylancr 589 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (((-∞[,]𝑦) ∪ (𝑦(,]+∞)) = ℝ* ↔ (ℝ* ∖ (-∞[,]𝑦)) = (𝑦(,]+∞)))
5246, 51mpbid 234 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (ℝ* ∖ (-∞[,]𝑦)) = (𝑦(,]+∞))
5352eqcomd 2829 . . . . . . . . . 10 (𝑦 ∈ ℝ* → (𝑦(,]+∞) = (ℝ* ∖ (-∞[,]𝑦)))
54 difeq2 4095 . . . . . . . . . . 11 (𝑥 = (-∞[,]𝑦) → (ℝ*𝑥) = (ℝ* ∖ (-∞[,]𝑦)))
5554rspceeqv 3640 . . . . . . . . . 10 (((-∞[,]𝑦) ∈ ran [,] ∧ (𝑦(,]+∞) = (ℝ* ∖ (-∞[,]𝑦))) → ∃𝑥 ∈ ran [,](𝑦(,]+∞) = (ℝ*𝑥))
5628, 53, 55syl2anc 586 . . . . . . . . 9 (𝑦 ∈ ℝ* → ∃𝑥 ∈ ran [,](𝑦(,]+∞) = (ℝ*𝑥))
57 xrex 12389 . . . . . . . . . . 11 * ∈ V
5857difexi 5234 . . . . . . . . . 10 (ℝ*𝑥) ∈ V
596, 58elrnmpti 5834 . . . . . . . . 9 ((𝑦(,]+∞) ∈ ran 𝐹 ↔ ∃𝑥 ∈ ran [,](𝑦(,]+∞) = (ℝ*𝑥))
6056, 59sylibr 236 . . . . . . . 8 (𝑦 ∈ ℝ* → (𝑦(,]+∞) ∈ ran 𝐹)
6125, 60fmpti 6878 . . . . . . 7 (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)):ℝ*⟶ran 𝐹
62 frn 6522 . . . . . . 7 ((𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)):ℝ*⟶ran 𝐹 → ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ⊆ ran 𝐹)
6361, 62ax-mp 5 . . . . . 6 ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ⊆ ran 𝐹
64 eqid 2823 . . . . . . . 8 (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) = (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))
65 fnovrn 7325 . . . . . . . . . . 11 (([,] Fn (ℝ* × ℝ*) ∧ 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦[,]+∞) ∈ ran [,])
669, 31, 65mp3an13 1448 . . . . . . . . . 10 (𝑦 ∈ ℝ* → (𝑦[,]+∞) ∈ ran [,])
67 df-ico 12747 . . . . . . . . . . . . . . 15 [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎𝑐𝑐 < 𝑏)})
68 xrlenlt 10708 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → (𝑦𝑧 ↔ ¬ 𝑧 < 𝑦))
69 xrltletr 12553 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑧 < 𝑦𝑦 ≤ +∞) → 𝑧 < +∞))
70 xrltle 12545 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑧 < +∞ → 𝑧 ≤ +∞))
71703adant2 1127 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑧 < +∞ → 𝑧 ≤ +∞))
7269, 71syld 47 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑧 < 𝑦𝑦 ≤ +∞) → 𝑧 ≤ +∞))
73 xrletr 12554 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → ((-∞ ≤ 𝑦𝑦𝑧) → -∞ ≤ 𝑧))
7467, 35, 68, 35, 72, 73ixxun 12757 . . . . . . . . . . . . . 14 (((-∞ ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ ≤ 𝑦𝑦 ≤ +∞)) → ((-∞[,)𝑦) ∪ (𝑦[,]+∞)) = (-∞[,]+∞))
7529, 30, 32, 33, 34, 74syl32anc 1374 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ((-∞[,)𝑦) ∪ (𝑦[,]+∞)) = (-∞[,]+∞))
76 uncom 4131 . . . . . . . . . . . . 13 ((-∞[,)𝑦) ∪ (𝑦[,]+∞)) = ((𝑦[,]+∞) ∪ (-∞[,)𝑦))
7775, 76, 453eqtr3g 2881 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → ((𝑦[,]+∞) ∪ (-∞[,)𝑦)) = ℝ*)
78 iccssxr 12822 . . . . . . . . . . . . 13 (𝑦[,]+∞) ⊆ ℝ*
79 incom 4180 . . . . . . . . . . . . . 14 ((𝑦[,]+∞) ∩ (-∞[,)𝑦)) = ((-∞[,)𝑦) ∩ (𝑦[,]+∞))
8067, 35, 68ixxdisj 12756 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞[,)𝑦) ∩ (𝑦[,]+∞)) = ∅)
8126, 31, 80mp3an13 1448 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → ((-∞[,)𝑦) ∩ (𝑦[,]+∞)) = ∅)
8279, 81syl5eq 2870 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ((𝑦[,]+∞) ∩ (-∞[,)𝑦)) = ∅)
83 uneqdifeq 4440 . . . . . . . . . . . . 13 (((𝑦[,]+∞) ⊆ ℝ* ∧ ((𝑦[,]+∞) ∩ (-∞[,)𝑦)) = ∅) → (((𝑦[,]+∞) ∪ (-∞[,)𝑦)) = ℝ* ↔ (ℝ* ∖ (𝑦[,]+∞)) = (-∞[,)𝑦)))
8478, 82, 83sylancr 589 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (((𝑦[,]+∞) ∪ (-∞[,)𝑦)) = ℝ* ↔ (ℝ* ∖ (𝑦[,]+∞)) = (-∞[,)𝑦)))
8577, 84mpbid 234 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (ℝ* ∖ (𝑦[,]+∞)) = (-∞[,)𝑦))
8685eqcomd 2829 . . . . . . . . . 10 (𝑦 ∈ ℝ* → (-∞[,)𝑦) = (ℝ* ∖ (𝑦[,]+∞)))
87 difeq2 4095 . . . . . . . . . . 11 (𝑥 = (𝑦[,]+∞) → (ℝ*𝑥) = (ℝ* ∖ (𝑦[,]+∞)))
8887rspceeqv 3640 . . . . . . . . . 10 (((𝑦[,]+∞) ∈ ran [,] ∧ (-∞[,)𝑦) = (ℝ* ∖ (𝑦[,]+∞))) → ∃𝑥 ∈ ran [,](-∞[,)𝑦) = (ℝ*𝑥))
8966, 86, 88syl2anc 586 . . . . . . . . 9 (𝑦 ∈ ℝ* → ∃𝑥 ∈ ran [,](-∞[,)𝑦) = (ℝ*𝑥))
906, 58elrnmpti 5834 . . . . . . . . 9 ((-∞[,)𝑦) ∈ ran 𝐹 ↔ ∃𝑥 ∈ ran [,](-∞[,)𝑦) = (ℝ*𝑥))
9189, 90sylibr 236 . . . . . . . 8 (𝑦 ∈ ℝ* → (-∞[,)𝑦) ∈ ran 𝐹)
9264, 91fmpti 6878 . . . . . . 7 (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)):ℝ*⟶ran 𝐹
93 frn 6522 . . . . . . 7 ((𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)):ℝ*⟶ran 𝐹 → ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) ⊆ ran 𝐹)
9492, 93ax-mp 5 . . . . . 6 ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) ⊆ ran 𝐹
9563, 94unssi 4163 . . . . 5 (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ⊆ ran 𝐹
96 fiss 8890 . . . . 5 ((ran 𝐹 ∈ V ∧ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ⊆ ran 𝐹) → (fi‘(ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)))) ⊆ (fi‘ran 𝐹))
9724, 95, 96mp2an 690 . . . 4 (fi‘(ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)))) ⊆ (fi‘ran 𝐹)
98 tgss 21578 . . . 4 (((fi‘ran 𝐹) ∈ V ∧ (fi‘(ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)))) ⊆ (fi‘ran 𝐹)) → (topGen‘(fi‘(ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))))) ⊆ (topGen‘(fi‘ran 𝐹)))
994, 97, 98mp2an 690 . . 3 (topGen‘(fi‘(ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))))) ⊆ (topGen‘(fi‘ran 𝐹))
1003, 99eqsstri 4003 . 2 (ordTop‘ ≤ ) ⊆ (topGen‘(fi‘ran 𝐹))
101 letop 21816 . . 3 (ordTop‘ ≤ ) ∈ Top
102 tgfiss 21601 . . 3 (((ordTop‘ ≤ ) ∈ Top ∧ ran 𝐹 ⊆ (ordTop‘ ≤ )) → (topGen‘(fi‘ran 𝐹)) ⊆ (ordTop‘ ≤ ))
103101, 23, 102mp2an 690 . 2 (topGen‘(fi‘ran 𝐹)) ⊆ (ordTop‘ ≤ )
104100, 103eqssi 3985 1 (ordTop‘ ≤ ) = (topGen‘(fi‘ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3141  Vcvv 3496  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541   class class class wbr 5068  cmpt 5148   × cxp 5555  ran crn 5558   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  ficfi 8876  +∞cpnf 10674  -∞cmnf 10675  *cxr 10676   < clt 10677  cle 10678  (,]cioc 12742  [,)cico 12743  [,]cicc 12744  topGenctg 16713  ordTopcordt 16774  Topctop 21503  Clsdccld 21626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fi 8877  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-ioc 12746  df-ico 12747  df-icc 12748  df-topgen 16719  df-ordt 16776  df-ps 17812  df-tsr 17813  df-top 21504  df-topon 21521  df-bases 21556  df-cld 21629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator