MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lediv2a Structured version   Visualization version   GIF version

Theorem lediv2a 11522
Description: Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.)
Assertion
Ref Expression
lediv2a ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴))

Proof of Theorem lediv2a
StepHypRef Expression
1 pm3.2 470 . . . . . . 7 (𝐶 ∈ ℝ → (𝐶 ∈ ℝ → (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ)))
21pm2.43i 52 . . . . . 6 (𝐶 ∈ ℝ → (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ))
32adantr 481 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ))
4 leid 10724 . . . . . 6 (𝐶 ∈ ℝ → 𝐶𝐶)
54anim1ci 615 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → (0 ≤ 𝐶𝐶𝐶))
63, 5jca 512 . . . 4 ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → ((𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶𝐶)))
76ad2antlr 723 . . 3 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → ((𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶𝐶)))
873adantl2 1159 . 2 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → ((𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶𝐶)))
9 id 22 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
109ad2ant2r 743 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
1110adantr 481 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ 𝐴𝐵) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
12 simplr 765 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < 𝐴)
1312anim1i 614 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ 𝐴𝐵) → (0 < 𝐴𝐴𝐵))
1411, 13jca 512 . . 3 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ 𝐴𝐵) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴𝐴𝐵)))
15143adantl3 1160 . 2 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴𝐴𝐵)))
16 lediv12a 11521 . 2 ((((𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶𝐶)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴𝐴𝐵))) → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴))
178, 15, 16syl2anc 584 1 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079  wcel 2105   class class class wbr 5057  (class class class)co 7145  cr 10524  0cc0 10525   < clt 10663  cle 10664   / cdiv 11285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286
This theorem is referenced by:  lediv2ad  12441  dchrisum0lem1b  26018  pntrmax  26067
  Copyright terms: Public domain W3C validator