MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ledivdiv Structured version   Visualization version   GIF version

Theorem ledivdiv 11521
Description: Invert ratios of positive numbers and swap their ordering. (Contributed by NM, 9-Jan-2006.)
Assertion
Ref Expression
ledivdiv ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 / 𝐵) ≤ (𝐶 / 𝐷) ↔ (𝐷 / 𝐶) ≤ (𝐵 / 𝐴)))

Proof of Theorem ledivdiv
StepHypRef Expression
1 simpl 485 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ∈ ℝ)
2 gt0ne0 11097 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ≠ 0)
31, 2jca 514 . . . . . 6 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0))
4 redivcl 11351 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)
543expb 1115 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ)
63, 5sylan2 594 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 / 𝐵) ∈ ℝ)
76adantlr 713 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 / 𝐵) ∈ ℝ)
8 divgt0 11500 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵))
97, 8jca 514 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) ∈ ℝ ∧ 0 < (𝐴 / 𝐵)))
10 simpl 485 . . . . . . 7 ((𝐷 ∈ ℝ ∧ 0 < 𝐷) → 𝐷 ∈ ℝ)
11 gt0ne0 11097 . . . . . . 7 ((𝐷 ∈ ℝ ∧ 0 < 𝐷) → 𝐷 ≠ 0)
1210, 11jca 514 . . . . . 6 ((𝐷 ∈ ℝ ∧ 0 < 𝐷) → (𝐷 ∈ ℝ ∧ 𝐷 ≠ 0))
13 redivcl 11351 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐷 ≠ 0) → (𝐶 / 𝐷) ∈ ℝ)
14133expb 1115 . . . . . 6 ((𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 𝐷 ≠ 0)) → (𝐶 / 𝐷) ∈ ℝ)
1512, 14sylan2 594 . . . . 5 ((𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → (𝐶 / 𝐷) ∈ ℝ)
1615adantlr 713 . . . 4 (((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → (𝐶 / 𝐷) ∈ ℝ)
17 divgt0 11500 . . . 4 (((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → 0 < (𝐶 / 𝐷))
1816, 17jca 514 . . 3 (((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → ((𝐶 / 𝐷) ∈ ℝ ∧ 0 < (𝐶 / 𝐷)))
19 lerec 11515 . . 3 ((((𝐴 / 𝐵) ∈ ℝ ∧ 0 < (𝐴 / 𝐵)) ∧ ((𝐶 / 𝐷) ∈ ℝ ∧ 0 < (𝐶 / 𝐷))) → ((𝐴 / 𝐵) ≤ (𝐶 / 𝐷) ↔ (1 / (𝐶 / 𝐷)) ≤ (1 / (𝐴 / 𝐵))))
209, 18, 19syl2an 597 . 2 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 / 𝐵) ≤ (𝐶 / 𝐷) ↔ (1 / (𝐶 / 𝐷)) ≤ (1 / (𝐴 / 𝐵))))
21 recn 10619 . . . . . 6 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
2221adantr 483 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ∈ ℂ)
23 gt0ne0 11097 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ≠ 0)
2422, 23jca 514 . . . 4 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
25 recn 10619 . . . . . 6 (𝐷 ∈ ℝ → 𝐷 ∈ ℂ)
2625adantr 483 . . . . 5 ((𝐷 ∈ ℝ ∧ 0 < 𝐷) → 𝐷 ∈ ℂ)
2726, 11jca 514 . . . 4 ((𝐷 ∈ ℝ ∧ 0 < 𝐷) → (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))
28 recdiv 11338 . . . 4 (((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (1 / (𝐶 / 𝐷)) = (𝐷 / 𝐶))
2924, 27, 28syl2an 597 . . 3 (((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → (1 / (𝐶 / 𝐷)) = (𝐷 / 𝐶))
30 recn 10619 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3130adantr 483 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
32 gt0ne0 11097 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
3331, 32jca 514 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
34 recn 10619 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
3534adantr 483 . . . . 5 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ∈ ℂ)
3635, 2jca 514 . . . 4 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
37 recdiv 11338 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴))
3833, 36, 37syl2an 597 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴))
3929, 38breqan12rd 5074 . 2 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((1 / (𝐶 / 𝐷)) ≤ (1 / (𝐴 / 𝐵)) ↔ (𝐷 / 𝐶) ≤ (𝐵 / 𝐴)))
4020, 39bitrd 281 1 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 / 𝐵) ≤ (𝐶 / 𝐷) ↔ (𝐷 / 𝐶) ≤ (𝐵 / 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  wne 3014   class class class wbr 5057  (class class class)co 7148  cc 10527  cr 10528  0cc0 10529  1c1 10530   < clt 10667  cle 10668   / cdiv 11289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290
This theorem is referenced by:  ledivdivd  12448
  Copyright terms: Public domain W3C validator