MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legov Structured version   Visualization version   GIF version

Theorem legov 26370
Description: Value of the less-than relationship. Definition 5.4 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 21-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legov.a (𝜑𝐴𝑃)
legov.b (𝜑𝐵𝑃)
legov.c (𝜑𝐶𝑃)
legov.d (𝜑𝐷𝑃)
Assertion
Ref Expression
legov (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
Distinct variable groups:   𝑧,   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝑧,𝐷   𝑧,𝐼   𝑧,𝑃   𝑧,𝐺   𝜑,𝑧
Allowed substitution hint:   (𝑧)

Proof of Theorem legov
Dummy variables 𝑐 𝑑 𝑒 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 legval.p . . . . 5 𝑃 = (Base‘𝐺)
2 legval.d . . . . 5 = (dist‘𝐺)
3 legval.i . . . . 5 𝐼 = (Itv‘𝐺)
4 legval.l . . . . 5 = (≤G‘𝐺)
5 legval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
61, 2, 3, 4, 5legval 26369 . . . 4 (𝜑 = {⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))})
76breqd 5076 . . 3 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ (𝐴 𝐵){⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))} (𝐶 𝐷)))
8 ovex 7188 . . . 4 (𝐴 𝐵) ∈ V
9 ovex 7188 . . . 4 (𝐶 𝐷) ∈ V
10 simpr 487 . . . . . . 7 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → 𝑓 = (𝐶 𝐷))
1110eqeq1d 2823 . . . . . 6 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → (𝑓 = (𝑥 𝑦) ↔ (𝐶 𝐷) = (𝑥 𝑦)))
12 simpl 485 . . . . . . . . 9 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → 𝑒 = (𝐴 𝐵))
1312eqeq1d 2823 . . . . . . . 8 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → (𝑒 = (𝑥 𝑧) ↔ (𝐴 𝐵) = (𝑥 𝑧)))
1413anbi2d 630 . . . . . . 7 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → ((𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)) ↔ (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
1514rexbidv 3297 . . . . . 6 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → (∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
1611, 15anbi12d 632 . . . . 5 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → ((𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧))) ↔ ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
17162rexbidv 3300 . . . 4 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → (∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧))) ↔ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
18 eqid 2821 . . . 4 {⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))} = {⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))}
198, 9, 17, 18braba 5423 . . 3 ((𝐴 𝐵){⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))} (𝐶 𝐷) ↔ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
207, 19syl6bb 289 . 2 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
21 anass 471 . . . . . . . 8 (((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ↔ (((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))))
2221anbi1i 625 . . . . . . 7 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ∧ 𝑥𝑃) ↔ ((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) ∧ 𝑥𝑃))
23 eqid 2821 . . . . . . . . . . 11 (cgrG‘𝐺) = (cgrG‘𝐺)
245ad5antr 732 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝐺 ∈ TarskiG)
2524adantr 483 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝐺 ∈ TarskiG)
26 simp-5r 784 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝑐𝑃)
2726adantr 483 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑐𝑃)
28 simpllr 774 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑥𝑃)
29 simp-4r 782 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝑑𝑃)
3029adantr 483 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑑𝑃)
31 legov.c . . . . . . . . . . . . 13 (𝜑𝐶𝑃)
3231ad5antr 732 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝐶𝑃)
3332adantr 483 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝐶𝑃)
34 simprl 769 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑧𝑃)
35 legov.d . . . . . . . . . . . . 13 (𝜑𝐷𝑃)
3635ad5antr 732 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝐷𝑃)
3736adantr 483 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝐷𝑃)
38 simprr 771 . . . . . . . . . . . 12 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)
391, 2, 3, 23, 25, 27, 30, 28, 33, 37, 34, 38cgr3swap23 26309 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → ⟨“𝑐𝑥𝑑”⟩(cgrG‘𝐺)⟨“𝐶𝑧𝐷”⟩)
40 simprl 769 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝑥 ∈ (𝑐𝐼𝑑))
4140adantr 483 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑥 ∈ (𝑐𝐼𝑑))
421, 2, 3, 23, 25, 27, 28, 30, 33, 34, 37, 39, 41tgbtwnxfr 26315 . . . . . . . . . 10 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑧 ∈ (𝐶𝐼𝐷))
43 simplrr 776 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → (𝐴 𝐵) = (𝑐 𝑥))
441, 2, 3, 23, 25, 27, 28, 30, 33, 34, 37, 39cgr3simp1 26305 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → (𝑐 𝑥) = (𝐶 𝑧))
4543, 44eqtrd 2856 . . . . . . . . . 10 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → (𝐴 𝐵) = (𝐶 𝑧))
4642, 45jca 514 . . . . . . . . 9 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
47 eqid 2821 . . . . . . . . . 10 (LineG‘𝐺) = (LineG‘𝐺)
48 simplr 767 . . . . . . . . . 10 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝑥𝑃)
491, 47, 3, 24, 26, 48, 29, 40btwncolg3 26342 . . . . . . . . . 10 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → (𝑑 ∈ (𝑐(LineG‘𝐺)𝑥) ∨ 𝑐 = 𝑥))
50 simpllr 774 . . . . . . . . . . 11 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → (𝐶 𝐷) = (𝑐 𝑑))
5150eqcomd 2827 . . . . . . . . . 10 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → (𝑐 𝑑) = (𝐶 𝐷))
521, 47, 3, 24, 26, 29, 48, 23, 32, 36, 2, 49, 51lnext 26352 . . . . . . . . 9 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → ∃𝑧𝑃 ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)
5346, 52reximddv 3275 . . . . . . . 8 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
5453adantllr 717 . . . . . . 7 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
5522, 54sylanbr 584 . . . . . 6 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
56 simprr 771 . . . . . . 7 ((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) → ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))
57 eleq1w 2895 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 ∈ (𝑐𝐼𝑑) ↔ 𝑧 ∈ (𝑐𝐼𝑑)))
58 oveq2 7163 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑐 𝑥) = (𝑐 𝑧))
5958eqeq2d 2832 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝐴 𝐵) = (𝑐 𝑥) ↔ (𝐴 𝐵) = (𝑐 𝑧)))
6057, 59anbi12d 632 . . . . . . . 8 (𝑥 = 𝑧 → ((𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥)) ↔ (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))))
6160cbvrexvw 3450 . . . . . . 7 (∃𝑥𝑃 (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))
6256, 61sylibr 236 . . . . . 6 ((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) → ∃𝑥𝑃 (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥)))
6355, 62r19.29a 3289 . . . . 5 ((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
6463adantl3r 748 . . . 4 (((((𝜑 ∧ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
65 simpr 487 . . . . 5 ((𝜑 ∧ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))) → ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
66 oveq1 7162 . . . . . . . 8 (𝑐 = 𝑥 → (𝑐 𝑑) = (𝑥 𝑑))
6766eqeq2d 2832 . . . . . . 7 (𝑐 = 𝑥 → ((𝐶 𝐷) = (𝑐 𝑑) ↔ (𝐶 𝐷) = (𝑥 𝑑)))
68 oveq1 7162 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝑐𝐼𝑑) = (𝑥𝐼𝑑))
6968eleq2d 2898 . . . . . . . . 9 (𝑐 = 𝑥 → (𝑧 ∈ (𝑐𝐼𝑑) ↔ 𝑧 ∈ (𝑥𝐼𝑑)))
70 oveq1 7162 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝑐 𝑧) = (𝑥 𝑧))
7170eqeq2d 2832 . . . . . . . . 9 (𝑐 = 𝑥 → ((𝐴 𝐵) = (𝑐 𝑧) ↔ (𝐴 𝐵) = (𝑥 𝑧)))
7269, 71anbi12d 632 . . . . . . . 8 (𝑐 = 𝑥 → ((𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)) ↔ (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
7372rexbidv 3297 . . . . . . 7 (𝑐 = 𝑥 → (∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
7467, 73anbi12d 632 . . . . . 6 (𝑐 = 𝑥 → (((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ↔ ((𝐶 𝐷) = (𝑥 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
75 oveq2 7163 . . . . . . . 8 (𝑑 = 𝑦 → (𝑥 𝑑) = (𝑥 𝑦))
7675eqeq2d 2832 . . . . . . 7 (𝑑 = 𝑦 → ((𝐶 𝐷) = (𝑥 𝑑) ↔ (𝐶 𝐷) = (𝑥 𝑦)))
77 oveq2 7163 . . . . . . . . . 10 (𝑑 = 𝑦 → (𝑥𝐼𝑑) = (𝑥𝐼𝑦))
7877eleq2d 2898 . . . . . . . . 9 (𝑑 = 𝑦 → (𝑧 ∈ (𝑥𝐼𝑑) ↔ 𝑧 ∈ (𝑥𝐼𝑦)))
7978anbi1d 631 . . . . . . . 8 (𝑑 = 𝑦 → ((𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧)) ↔ (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
8079rexbidv 3297 . . . . . . 7 (𝑑 = 𝑦 → (∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
8176, 80anbi12d 632 . . . . . 6 (𝑑 = 𝑦 → (((𝐶 𝐷) = (𝑥 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧))) ↔ ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
8274, 81cbvrex2vw 3462 . . . . 5 (∃𝑐𝑃𝑑𝑃 ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ↔ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
8365, 82sylibr 236 . . . 4 ((𝜑 ∧ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))) → ∃𝑐𝑃𝑑𝑃 ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))))
8464, 83r19.29vva 3336 . . 3 ((𝜑 ∧ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
8531adantr 483 . . . 4 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐶𝑃)
8635adantr 483 . . . 4 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐷𝑃)
87 eqidd 2822 . . . 4 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (𝐶 𝐷) = (𝐶 𝐷))
88 simpr 487 . . . 4 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
89 oveq1 7162 . . . . . . 7 (𝑥 = 𝐶 → (𝑥 𝑦) = (𝐶 𝑦))
9089eqeq2d 2832 . . . . . 6 (𝑥 = 𝐶 → ((𝐶 𝐷) = (𝑥 𝑦) ↔ (𝐶 𝐷) = (𝐶 𝑦)))
91 oveq1 7162 . . . . . . . . 9 (𝑥 = 𝐶 → (𝑥𝐼𝑦) = (𝐶𝐼𝑦))
9291eleq2d 2898 . . . . . . . 8 (𝑥 = 𝐶 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝐶𝐼𝑦)))
93 oveq1 7162 . . . . . . . . 9 (𝑥 = 𝐶 → (𝑥 𝑧) = (𝐶 𝑧))
9493eqeq2d 2832 . . . . . . . 8 (𝑥 = 𝐶 → ((𝐴 𝐵) = (𝑥 𝑧) ↔ (𝐴 𝐵) = (𝐶 𝑧)))
9592, 94anbi12d 632 . . . . . . 7 (𝑥 = 𝐶 → ((𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)) ↔ (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
9695rexbidv 3297 . . . . . 6 (𝑥 = 𝐶 → (∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
9790, 96anbi12d 632 . . . . 5 (𝑥 = 𝐶 → (((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))) ↔ ((𝐶 𝐷) = (𝐶 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧)))))
98 oveq2 7163 . . . . . . 7 (𝑦 = 𝐷 → (𝐶 𝑦) = (𝐶 𝐷))
9998eqeq2d 2832 . . . . . 6 (𝑦 = 𝐷 → ((𝐶 𝐷) = (𝐶 𝑦) ↔ (𝐶 𝐷) = (𝐶 𝐷)))
100 oveq2 7163 . . . . . . . . 9 (𝑦 = 𝐷 → (𝐶𝐼𝑦) = (𝐶𝐼𝐷))
101100eleq2d 2898 . . . . . . . 8 (𝑦 = 𝐷 → (𝑧 ∈ (𝐶𝐼𝑦) ↔ 𝑧 ∈ (𝐶𝐼𝐷)))
102101anbi1d 631 . . . . . . 7 (𝑦 = 𝐷 → ((𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧)) ↔ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
103102rexbidv 3297 . . . . . 6 (𝑦 = 𝐷 → (∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
10499, 103anbi12d 632 . . . . 5 (𝑦 = 𝐷 → (((𝐶 𝐷) = (𝐶 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ↔ ((𝐶 𝐷) = (𝐶 𝐷) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))))
10597, 104rspc2ev 3634 . . . 4 ((𝐶𝑃𝐷𝑃 ∧ ((𝐶 𝐷) = (𝐶 𝐷) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))) → ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
10685, 86, 87, 88, 105syl112anc 1370 . . 3 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
10784, 106impbida 799 . 2 (𝜑 → (∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
10820, 107bitrd 281 1 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wrex 3139   class class class wbr 5065  {copab 5127  cfv 6354  (class class class)co 7155  ⟨“cs3 14203  Basecbs 16482  distcds 16573  TarskiGcstrkg 26215  Itvcitv 26221  LineGclng 26222  cgrGccgrg 26295  ≤Gcleg 26367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-dju 9329  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-xnn0 11967  df-z 11981  df-uz 12243  df-fz 12892  df-fzo 13033  df-hash 13690  df-word 13861  df-concat 13922  df-s1 13949  df-s2 14209  df-s3 14210  df-trkgc 26233  df-trkgb 26234  df-trkgcb 26235  df-trkg 26238  df-cgrg 26296  df-leg 26368
This theorem is referenced by:  legov2  26371  legid  26372  btwnleg  26373  legtrd  26374  legtri3  26375  legtrid  26376  leg0  26377  mideulem  26521  opphllem3  26534
  Copyright terms: Public domain W3C validator