MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legso Structured version   Visualization version   GIF version

Theorem legso 26312
Description: The "shorter than" relation induces an order on pairs. Remark 5.13 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legso.a 𝐸 = ( “ (𝑃 × 𝑃))
legso.f (𝜑 → Fun )
legso.l < = (( 𝐸) ∖ I )
legso.d (𝜑 → (𝑃 × 𝑃) ⊆ dom )
Assertion
Ref Expression
legso (𝜑< Or 𝐸)

Proof of Theorem legso
Dummy variables 𝑎 𝑥 𝑦 𝑡 𝑢 𝑣 𝑧 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neirr 3022 . . . . . . 7 ¬ (𝑥 𝑦) ≠ (𝑥 𝑦)
21intnan 487 . . . . . 6 ¬ ((𝑥 𝑦) (𝑥 𝑦) ∧ (𝑥 𝑦) ≠ (𝑥 𝑦))
3 legval.p . . . . . . 7 𝑃 = (Base‘𝐺)
4 legval.d . . . . . . 7 = (dist‘𝐺)
5 legval.i . . . . . . 7 𝐼 = (Itv‘𝐺)
6 legval.l . . . . . . 7 = (≤G‘𝐺)
7 legval.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
87adantr 481 . . . . . . . 8 ((𝜑𝑎𝐸) → 𝐺 ∈ TarskiG)
98ad3antrrr 726 . . . . . . 7 (((((𝜑𝑎𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → 𝐺 ∈ TarskiG)
10 legso.a . . . . . . 7 𝐸 = ( “ (𝑃 × 𝑃))
11 legso.f . . . . . . . . 9 (𝜑 → Fun )
1211adantr 481 . . . . . . . 8 ((𝜑𝑎𝐸) → Fun )
1312ad3antrrr 726 . . . . . . 7 (((((𝜑𝑎𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → Fun )
14 legso.l . . . . . . 7 < = (( 𝐸) ∖ I )
15 legso.d . . . . . . . 8 (𝜑 → (𝑃 × 𝑃) ⊆ dom )
1615ad4antr 728 . . . . . . 7 (((((𝜑𝑎𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → (𝑃 × 𝑃) ⊆ dom )
17 simpllr 772 . . . . . . 7 (((((𝜑𝑎𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → 𝑥𝑃)
18 simplr 765 . . . . . . 7 (((((𝜑𝑎𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → 𝑦𝑃)
193, 4, 5, 6, 9, 10, 13, 14, 16, 17, 18ltgov 26310 . . . . . 6 (((((𝜑𝑎𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → ((𝑥 𝑦) < (𝑥 𝑦) ↔ ((𝑥 𝑦) (𝑥 𝑦) ∧ (𝑥 𝑦) ≠ (𝑥 𝑦))))
202, 19mtbiri 328 . . . . 5 (((((𝜑𝑎𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → ¬ (𝑥 𝑦) < (𝑥 𝑦))
21 simpr 485 . . . . . 6 (((((𝜑𝑎𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → 𝑎 = (𝑥 𝑦))
2221, 21breq12d 5070 . . . . 5 (((((𝜑𝑎𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → (𝑎 < 𝑎 ↔ (𝑥 𝑦) < (𝑥 𝑦)))
2320, 22mtbird 326 . . . 4 (((((𝜑𝑎𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → ¬ 𝑎 < 𝑎)
24 simpr 485 . . . . 5 ((𝜑𝑎𝐸) → 𝑎𝐸)
253, 4, 5, 6, 8, 10, 12, 24ltgseg 26309 . . . 4 ((𝜑𝑎𝐸) → ∃𝑥𝑃𝑦𝑃 𝑎 = (𝑥 𝑦))
2623, 25r19.29vva 3333 . . 3 ((𝜑𝑎𝐸) → ¬ 𝑎 < 𝑎)
277ad8antr 736 . . . . . . . . . . 11 (((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → 𝐺 ∈ TarskiG)
2827ad3antrrr 726 . . . . . . . . . 10 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝐺 ∈ TarskiG)
29 simp-9r 790 . . . . . . . . . 10 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑥𝑃)
30 simp-8r 788 . . . . . . . . . 10 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑦𝑃)
31 simp-6r 784 . . . . . . . . . 10 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑧𝑃)
32 simp-5r 782 . . . . . . . . . 10 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑡𝑃)
33 simpllr 772 . . . . . . . . . 10 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑢𝑃)
34 simplr 765 . . . . . . . . . 10 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑣𝑃)
35 simp-10r 792 . . . . . . . . . . . . . 14 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → (𝑎 < 𝑏𝑏 < 𝑐))
3635simpld 495 . . . . . . . . . . . . 13 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑎 < 𝑏)
37 simp-7r 786 . . . . . . . . . . . . 13 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑎 = (𝑥 𝑦))
38 simp-4r 780 . . . . . . . . . . . . 13 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑏 = (𝑧 𝑡))
3936, 37, 383brtr3d 5088 . . . . . . . . . . . 12 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → (𝑥 𝑦) < (𝑧 𝑡))
4011ad8antr 736 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → Fun )
4140ad3antrrr 726 . . . . . . . . . . . . 13 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → Fun )
4215ad8antr 736 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → (𝑃 × 𝑃) ⊆ dom )
4342ad3antrrr 726 . . . . . . . . . . . . 13 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → (𝑃 × 𝑃) ⊆ dom )
443, 4, 5, 6, 28, 10, 41, 14, 43, 29, 30ltgov 26310 . . . . . . . . . . . 12 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → ((𝑥 𝑦) < (𝑧 𝑡) ↔ ((𝑥 𝑦) (𝑧 𝑡) ∧ (𝑥 𝑦) ≠ (𝑧 𝑡))))
4539, 44mpbid 233 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → ((𝑥 𝑦) (𝑧 𝑡) ∧ (𝑥 𝑦) ≠ (𝑧 𝑡)))
4645simpld 495 . . . . . . . . . 10 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → (𝑥 𝑦) (𝑧 𝑡))
4735simprd 496 . . . . . . . . . . . . 13 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑏 < 𝑐)
48 simpr 485 . . . . . . . . . . . . 13 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑐 = (𝑢 𝑣))
4947, 38, 483brtr3d 5088 . . . . . . . . . . . 12 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → (𝑧 𝑡) < (𝑢 𝑣))
503, 4, 5, 6, 28, 10, 41, 14, 43, 31, 32ltgov 26310 . . . . . . . . . . . 12 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → ((𝑧 𝑡) < (𝑢 𝑣) ↔ ((𝑧 𝑡) (𝑢 𝑣) ∧ (𝑧 𝑡) ≠ (𝑢 𝑣))))
5149, 50mpbid 233 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → ((𝑧 𝑡) (𝑢 𝑣) ∧ (𝑧 𝑡) ≠ (𝑢 𝑣)))
5251simpld 495 . . . . . . . . . 10 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → (𝑧 𝑡) (𝑢 𝑣))
533, 4, 5, 6, 28, 29, 30, 31, 32, 33, 34, 46, 52legtrd 26302 . . . . . . . . 9 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → (𝑥 𝑦) (𝑢 𝑣))
5428adantr 481 . . . . . . . . . . . 12 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → 𝐺 ∈ TarskiG)
5529adantr 481 . . . . . . . . . . . 12 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → 𝑥𝑃)
5630adantr 481 . . . . . . . . . . . 12 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → 𝑦𝑃)
5731adantr 481 . . . . . . . . . . . 12 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → 𝑧𝑃)
5832adantr 481 . . . . . . . . . . . 12 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → 𝑡𝑃)
5946adantr 481 . . . . . . . . . . . 12 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → (𝑥 𝑦) (𝑧 𝑡))
6052adantr 481 . . . . . . . . . . . . 13 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → (𝑧 𝑡) (𝑢 𝑣))
61 simpr 485 . . . . . . . . . . . . 13 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → (𝑥 𝑦) = (𝑢 𝑣))
6260, 61breqtrrd 5085 . . . . . . . . . . . 12 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → (𝑧 𝑡) (𝑥 𝑦))
633, 4, 5, 6, 54, 55, 56, 57, 58, 59, 62legtri3 26303 . . . . . . . . . . 11 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → (𝑥 𝑦) = (𝑧 𝑡))
6445simprd 496 . . . . . . . . . . . . 13 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → (𝑥 𝑦) ≠ (𝑧 𝑡))
6564adantr 481 . . . . . . . . . . . 12 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → (𝑥 𝑦) ≠ (𝑧 𝑡))
6665neneqd 3018 . . . . . . . . . . 11 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → ¬ (𝑥 𝑦) = (𝑧 𝑡))
6763, 66pm2.65da 813 . . . . . . . . . 10 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → ¬ (𝑥 𝑦) = (𝑢 𝑣))
6867neqned 3020 . . . . . . . . 9 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → (𝑥 𝑦) ≠ (𝑢 𝑣))
693, 4, 5, 6, 28, 10, 41, 14, 43, 29, 30ltgov 26310 . . . . . . . . 9 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → ((𝑥 𝑦) < (𝑢 𝑣) ↔ ((𝑥 𝑦) (𝑢 𝑣) ∧ (𝑥 𝑦) ≠ (𝑢 𝑣))))
7053, 68, 69mpbir2and 709 . . . . . . . 8 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → (𝑥 𝑦) < (𝑢 𝑣))
7170, 37, 483brtr4d 5089 . . . . . . 7 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑎 < 𝑐)
72 simp-5r 782 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → (𝑎𝐸𝑏𝐸𝑐𝐸))
7372simp3d 1136 . . . . . . . . 9 ((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → 𝑐𝐸)
7473ad3antrrr 726 . . . . . . . 8 (((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → 𝑐𝐸)
753, 4, 5, 6, 27, 10, 40, 74ltgseg 26309 . . . . . . 7 (((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → ∃𝑢𝑃𝑣𝑃 𝑐 = (𝑢 𝑣))
7671, 75r19.29vva 3333 . . . . . 6 (((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → 𝑎 < 𝑐)
777ad5antr 730 . . . . . . 7 ((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → 𝐺 ∈ TarskiG)
7811ad5antr 730 . . . . . . 7 ((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → Fun )
7972simp2d 1135 . . . . . . 7 ((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → 𝑏𝐸)
803, 4, 5, 6, 77, 10, 78, 79ltgseg 26309 . . . . . 6 ((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → ∃𝑧𝑃𝑡𝑃 𝑏 = (𝑧 𝑡))
8176, 80r19.29vva 3333 . . . . 5 ((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → 𝑎 < 𝑐)
827ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) → 𝐺 ∈ TarskiG)
8311ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) → Fun )
84 simplr1 1207 . . . . . 6 (((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) → 𝑎𝐸)
853, 4, 5, 6, 82, 10, 83, 84ltgseg 26309 . . . . 5 (((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) → ∃𝑥𝑃𝑦𝑃 𝑎 = (𝑥 𝑦))
8681, 85r19.29vva 3333 . . . 4 (((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) → 𝑎 < 𝑐)
8786ex 413 . . 3 ((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) → ((𝑎 < 𝑏𝑏 < 𝑐) → 𝑎 < 𝑐))
8826, 87ispod 5475 . 2 (𝜑< Po 𝐸)
897ad8antr 736 . . . . . . . . 9 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → 𝐺 ∈ TarskiG)
90 simp-6r 784 . . . . . . . . 9 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → 𝑥𝑃)
91 simp-5r 782 . . . . . . . . 9 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → 𝑦𝑃)
92 simpllr 772 . . . . . . . . 9 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → 𝑧𝑃)
93 simplr 765 . . . . . . . . 9 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → 𝑡𝑃)
943, 4, 5, 6, 89, 90, 91, 92, 93legtrid 26304 . . . . . . . 8 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → ((𝑥 𝑦) (𝑧 𝑡) ∨ (𝑧 𝑡) (𝑥 𝑦)))
9511ad8antr 736 . . . . . . . . . 10 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → Fun )
9615ad8antr 736 . . . . . . . . . 10 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → (𝑃 × 𝑃) ⊆ dom )
973, 4, 5, 6, 89, 10, 95, 14, 96, 90, 91legov3 26311 . . . . . . . . 9 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → ((𝑥 𝑦) (𝑧 𝑡) ↔ ((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡))))
983, 4, 5, 6, 89, 10, 95, 14, 96, 92, 93legov3 26311 . . . . . . . . 9 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → ((𝑧 𝑡) (𝑥 𝑦) ↔ ((𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑧 𝑡) = (𝑥 𝑦))))
9997, 98orbi12d 912 . . . . . . . 8 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → (((𝑥 𝑦) (𝑧 𝑡) ∨ (𝑧 𝑡) (𝑥 𝑦)) ↔ (((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡)) ∨ ((𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑧 𝑡) = (𝑥 𝑦)))))
10094, 99mpbid 233 . . . . . . 7 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → (((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡)) ∨ ((𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑧 𝑡) = (𝑥 𝑦))))
101 eqcom 2825 . . . . . . . . . 10 ((𝑥 𝑦) = (𝑧 𝑡) ↔ (𝑧 𝑡) = (𝑥 𝑦))
102101orbi2i 906 . . . . . . . . 9 (((𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑥 𝑦) = (𝑧 𝑡)) ↔ ((𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑧 𝑡) = (𝑥 𝑦)))
103102orbi2i 906 . . . . . . . 8 ((((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡)) ∨ ((𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑥 𝑦) = (𝑧 𝑡))) ↔ (((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡)) ∨ ((𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑧 𝑡) = (𝑥 𝑦))))
104 df-3or 1080 . . . . . . . . 9 (((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑥 𝑦) = (𝑧 𝑡)) ↔ (((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑧 𝑡) < (𝑥 𝑦)) ∨ (𝑥 𝑦) = (𝑧 𝑡)))
105 3orcomb 1086 . . . . . . . . 9 (((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑥 𝑦) = (𝑧 𝑡)) ↔ ((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡) ∨ (𝑧 𝑡) < (𝑥 𝑦)))
106 orordir 923 . . . . . . . . 9 ((((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑧 𝑡) < (𝑥 𝑦)) ∨ (𝑥 𝑦) = (𝑧 𝑡)) ↔ (((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡)) ∨ ((𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑥 𝑦) = (𝑧 𝑡))))
107104, 105, 1063bitr3ri 303 . . . . . . . 8 ((((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡)) ∨ ((𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑥 𝑦) = (𝑧 𝑡))) ↔ ((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡) ∨ (𝑧 𝑡) < (𝑥 𝑦)))
108103, 107bitr3i 278 . . . . . . 7 ((((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡)) ∨ ((𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑧 𝑡) = (𝑥 𝑦))) ↔ ((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡) ∨ (𝑧 𝑡) < (𝑥 𝑦)))
109100, 108sylib 219 . . . . . 6 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → ((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡) ∨ (𝑧 𝑡) < (𝑥 𝑦)))
110 simp-4r 780 . . . . . . . 8 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → 𝑎 = (𝑥 𝑦))
111 simpr 485 . . . . . . . 8 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → 𝑏 = (𝑧 𝑡))
112110, 111breq12d 5070 . . . . . . 7 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → (𝑎 < 𝑏 ↔ (𝑥 𝑦) < (𝑧 𝑡)))
113110, 111eqeq12d 2834 . . . . . . 7 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → (𝑎 = 𝑏 ↔ (𝑥 𝑦) = (𝑧 𝑡)))
114111, 110breq12d 5070 . . . . . . 7 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → (𝑏 < 𝑎 ↔ (𝑧 𝑡) < (𝑥 𝑦)))
115112, 113, 1143orbi123d 1426 . . . . . 6 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → ((𝑎 < 𝑏𝑎 = 𝑏𝑏 < 𝑎) ↔ ((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡) ∨ (𝑧 𝑡) < (𝑥 𝑦))))
116109, 115mpbird 258 . . . . 5 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → (𝑎 < 𝑏𝑎 = 𝑏𝑏 < 𝑎))
1177ad2antrr 722 . . . . . . 7 (((𝜑𝑎𝐸) ∧ 𝑏𝐸) → 𝐺 ∈ TarskiG)
11811ad2antrr 722 . . . . . . 7 (((𝜑𝑎𝐸) ∧ 𝑏𝐸) → Fun )
119 simpr 485 . . . . . . 7 (((𝜑𝑎𝐸) ∧ 𝑏𝐸) → 𝑏𝐸)
1203, 4, 5, 6, 117, 10, 118, 119ltgseg 26309 . . . . . 6 (((𝜑𝑎𝐸) ∧ 𝑏𝐸) → ∃𝑧𝑃𝑡𝑃 𝑏 = (𝑧 𝑡))
121120ad3antrrr 726 . . . . 5 ((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → ∃𝑧𝑃𝑡𝑃 𝑏 = (𝑧 𝑡))
122116, 121r19.29vva 3333 . . . 4 ((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → (𝑎 < 𝑏𝑎 = 𝑏𝑏 < 𝑎))
12325adantr 481 . . . 4 (((𝜑𝑎𝐸) ∧ 𝑏𝐸) → ∃𝑥𝑃𝑦𝑃 𝑎 = (𝑥 𝑦))
124122, 123r19.29vva 3333 . . 3 (((𝜑𝑎𝐸) ∧ 𝑏𝐸) → (𝑎 < 𝑏𝑎 = 𝑏𝑏 < 𝑎))
125124anasss 467 . 2 ((𝜑 ∧ (𝑎𝐸𝑏𝐸)) → (𝑎 < 𝑏𝑎 = 𝑏𝑏 < 𝑎))
12688, 125issod 5499 1 (𝜑< Or 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 841  w3o 1078  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wrex 3136  cdif 3930  wss 3933   class class class wbr 5057   I cid 5452   Or wor 5466   × cxp 5546  dom cdm 5548  cres 5550  cima 5551  Fun wfun 6342  cfv 6348  (class class class)co 7145  Basecbs 16471  distcds 16562  TarskiGcstrkg 26143  Itvcitv 26149  ≤Gcleg 26295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-hash 13679  df-word 13850  df-concat 13911  df-s1 13938  df-s2 14198  df-s3 14199  df-trkgc 26161  df-trkgb 26162  df-trkgcb 26163  df-trkg 26166  df-cgrg 26224  df-leg 26296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator