MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legtrd Structured version   Visualization version   GIF version

Theorem legtrd 26377
Description: Transitivity of the less-than relationship. Proposition 5.8 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legid.a (𝜑𝐴𝑃)
legid.b (𝜑𝐵𝑃)
legtrd.c (𝜑𝐶𝑃)
legtrd.d (𝜑𝐷𝑃)
legtrd.e (𝜑𝐸𝑃)
legtrd.f (𝜑𝐹𝑃)
legtrd.1 (𝜑 → (𝐴 𝐵) (𝐶 𝐷))
legtrd.2 (𝜑 → (𝐶 𝐷) (𝐸 𝐹))
Assertion
Ref Expression
legtrd (𝜑 → (𝐴 𝐵) (𝐸 𝐹))

Proof of Theorem legtrd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 legval.p . . . . . 6 𝑃 = (Base‘𝐺)
2 eqid 2823 . . . . . 6 (LineG‘𝐺) = (LineG‘𝐺)
3 legval.i . . . . . 6 𝐼 = (Itv‘𝐺)
4 legval.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
54ad4antr 730 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝐺 ∈ TarskiG)
6 legtrd.c . . . . . . 7 (𝜑𝐶𝑃)
76ad4antr 730 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝐶𝑃)
8 legtrd.d . . . . . . 7 (𝜑𝐷𝑃)
98ad4antr 730 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝐷𝑃)
10 simp-4r 782 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝑥𝑃)
11 eqid 2823 . . . . . 6 (cgrG‘𝐺) = (cgrG‘𝐺)
12 legtrd.e . . . . . . 7 (𝜑𝐸𝑃)
1312ad4antr 730 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝐸𝑃)
14 simplr 767 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝑦𝑃)
15 legval.d . . . . . 6 = (dist‘𝐺)
16 simpllr 774 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
1716simpld 497 . . . . . . 7 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝑥 ∈ (𝐶𝐼𝐷))
181, 2, 3, 5, 7, 10, 9, 17btwncolg3 26345 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → (𝐷 ∈ (𝐶(LineG‘𝐺)𝑥) ∨ 𝐶 = 𝑥))
19 simprr 771 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → (𝐶 𝐷) = (𝐸 𝑦))
201, 2, 3, 5, 7, 9, 10, 11, 13, 14, 15, 18, 19lnext 26355 . . . . 5 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → ∃𝑧𝑃 ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩)
215ad2antrr 724 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐺 ∈ TarskiG)
2213ad2antrr 724 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐸𝑃)
23 simplr 767 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑧𝑃)
24 simp-4r 782 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑦𝑃)
25 legtrd.f . . . . . . . . . 10 (𝜑𝐹𝑃)
2625ad6antr 734 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐹𝑃)
277ad2antrr 724 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐶𝑃)
2810ad2antrr 724 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑥𝑃)
299ad2antrr 724 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐷𝑃)
30 simpr 487 . . . . . . . . . . 11 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩)
311, 15, 3, 11, 21, 27, 29, 28, 22, 24, 23, 30cgr3swap23 26312 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → ⟨“𝐶𝑥𝐷”⟩(cgrG‘𝐺)⟨“𝐸𝑧𝑦”⟩)
3217ad2antrr 724 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑥 ∈ (𝐶𝐼𝐷))
331, 15, 3, 11, 21, 27, 28, 29, 22, 23, 24, 31, 32tgbtwnxfr 26318 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑧 ∈ (𝐸𝐼𝑦))
34 simpllr 774 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦)))
3534simpld 497 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑦 ∈ (𝐸𝐼𝐹))
361, 15, 3, 21, 22, 23, 24, 26, 33, 35tgbtwnexch 26286 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑧 ∈ (𝐸𝐼𝐹))
37 simp-5r 784 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
3837simprd 498 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝐴 𝐵) = (𝐶 𝑥))
391, 15, 3, 11, 21, 27, 28, 29, 22, 23, 24, 31cgr3simp1 26308 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝐶 𝑥) = (𝐸 𝑧))
4038, 39eqtrd 2858 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝐴 𝐵) = (𝐸 𝑧))
4136, 40jca 514 . . . . . . 7 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧)))
4241ex 415 . . . . . 6 ((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) → (⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩ → (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧))))
4342reximdva 3276 . . . . 5 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → (∃𝑧𝑃 ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩ → ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧))))
4420, 43mpd 15 . . . 4 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧)))
45 legtrd.2 . . . . . 6 (𝜑 → (𝐶 𝐷) (𝐸 𝐹))
46 legval.l . . . . . . 7 = (≤G‘𝐺)
471, 15, 3, 46, 4, 6, 8, 12, 25legov 26373 . . . . . 6 (𝜑 → ((𝐶 𝐷) (𝐸 𝐹) ↔ ∃𝑦𝑃 (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))))
4845, 47mpbid 234 . . . . 5 (𝜑 → ∃𝑦𝑃 (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦)))
4948ad2antrr 724 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) → ∃𝑦𝑃 (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦)))
5044, 49r19.29a 3291 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) → ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧)))
51 legtrd.1 . . . 4 (𝜑 → (𝐴 𝐵) (𝐶 𝐷))
52 legid.a . . . . 5 (𝜑𝐴𝑃)
53 legid.b . . . . 5 (𝜑𝐵𝑃)
541, 15, 3, 46, 4, 52, 53, 6, 8legov 26373 . . . 4 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))))
5551, 54mpbid 234 . . 3 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
5650, 55r19.29a 3291 . 2 (𝜑 → ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧)))
571, 15, 3, 46, 4, 52, 53, 12, 25legov 26373 . 2 (𝜑 → ((𝐴 𝐵) (𝐸 𝐹) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧))))
5856, 57mpbird 259 1 (𝜑 → (𝐴 𝐵) (𝐸 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wrex 3141   class class class wbr 5068  cfv 6357  (class class class)co 7158  ⟨“cs3 14206  Basecbs 16485  distcds 16576  TarskiGcstrkg 26218  Itvcitv 26224  LineGclng 26225  cgrGccgrg 26298  ≤Gcleg 26370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-concat 13925  df-s1 13952  df-s2 14212  df-s3 14213  df-trkgc 26236  df-trkgb 26237  df-trkgcb 26238  df-trkg 26241  df-cgrg 26299  df-leg 26371
This theorem is referenced by:  legso  26387
  Copyright terms: Public domain W3C validator