MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legtri3 Structured version   Visualization version   GIF version

Theorem legtri3 26379
Description: Equality from the less-than relationship. Proposition 5.9 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legid.a (𝜑𝐴𝑃)
legid.b (𝜑𝐵𝑃)
legtrd.c (𝜑𝐶𝑃)
legtrd.d (𝜑𝐷𝑃)
legtri3.1 (𝜑 → (𝐴 𝐵) (𝐶 𝐷))
legtri3.2 (𝜑 → (𝐶 𝐷) (𝐴 𝐵))
Assertion
Ref Expression
legtri3 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))

Proof of Theorem legtri3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 774 . . . . 5 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
21simprd 498 . . . 4 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐴 𝐵) = (𝐶 𝑥))
3 legval.p . . . . . 6 𝑃 = (Base‘𝐺)
4 legval.d . . . . . 6 = (dist‘𝐺)
5 legval.i . . . . . 6 𝐼 = (Itv‘𝐺)
6 legval.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
76ad4antr 730 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐺 ∈ TarskiG)
8 simp-4r 782 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥𝑃)
9 legtrd.d . . . . . . 7 (𝜑𝐷𝑃)
109ad4antr 730 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷𝑃)
11 legtrd.c . . . . . . 7 (𝜑𝐶𝑃)
1211ad4antr 730 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐶𝑃)
131simpld 497 . . . . . . 7 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥 ∈ (𝐶𝐼𝐷))
143, 4, 5, 7, 12, 8, 10, 13tgbtwncom 26277 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥 ∈ (𝐷𝐼𝐶))
15 simpr 487 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵)))
1615simpld 497 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷 ∈ (𝐶𝐼𝑦))
17 simplr 767 . . . . . . . . . 10 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑦𝑃)
18 legid.b . . . . . . . . . . 11 (𝜑𝐵𝑃)
1918ad4antr 730 . . . . . . . . . 10 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐵𝑃)
20 legid.a . . . . . . . . . . . 12 (𝜑𝐴𝑃)
2120ad4antr 730 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐴𝑃)
223, 4, 5, 7, 12, 10, 17, 16tgbtwncom 26277 . . . . . . . . . . . 12 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷 ∈ (𝑦𝐼𝐶))
233, 4, 5, 7, 17, 10, 8, 12, 22, 14tgbtwnexch2 26285 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥 ∈ (𝑦𝐼𝐶))
243, 4, 5, 7, 19, 21tgbtwntriv1 26280 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐵 ∈ (𝐵𝐼𝐴))
2515simprd 498 . . . . . . . . . . . 12 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐶 𝑦) = (𝐴 𝐵))
263, 4, 5, 7, 12, 17, 21, 19, 25tgcgrcomlr 26269 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝑦 𝐶) = (𝐵 𝐴))
272eqcomd 2830 . . . . . . . . . . . 12 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐶 𝑥) = (𝐴 𝐵))
283, 4, 5, 7, 12, 8, 21, 19, 27tgcgrcomlr 26269 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝑥 𝐶) = (𝐵 𝐴))
293, 4, 5, 7, 17, 8, 12, 19, 19, 21, 23, 24, 26, 28tgcgrsub 26298 . . . . . . . . . 10 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝑦 𝑥) = (𝐵 𝐵))
303, 4, 5, 7, 17, 8, 19, 29axtgcgrid 26252 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑦 = 𝑥)
3130oveq2d 7175 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐶𝐼𝑦) = (𝐶𝐼𝑥))
3216, 31eleqtrd 2918 . . . . . . 7 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷 ∈ (𝐶𝐼𝑥))
333, 4, 5, 7, 12, 10, 8, 32tgbtwncom 26277 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷 ∈ (𝑥𝐼𝐶))
343, 4, 5, 7, 8, 10, 12, 14, 33tgbtwnswapid 26281 . . . . 5 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥 = 𝐷)
3534oveq2d 7175 . . . 4 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐶 𝑥) = (𝐶 𝐷))
362, 35eqtrd 2859 . . 3 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐴 𝐵) = (𝐶 𝐷))
37 legtri3.2 . . . . 5 (𝜑 → (𝐶 𝐷) (𝐴 𝐵))
38 legval.l . . . . . 6 = (≤G‘𝐺)
393, 4, 5, 38, 6, 11, 9, 20, 18legov2 26375 . . . . 5 (𝜑 → ((𝐶 𝐷) (𝐴 𝐵) ↔ ∃𝑦𝑃 (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))))
4037, 39mpbid 234 . . . 4 (𝜑 → ∃𝑦𝑃 (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵)))
4140ad2antrr 724 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) → ∃𝑦𝑃 (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵)))
4236, 41r19.29a 3292 . 2 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) → (𝐴 𝐵) = (𝐶 𝐷))
43 legtri3.1 . . 3 (𝜑 → (𝐴 𝐵) (𝐶 𝐷))
443, 4, 5, 38, 6, 20, 18, 11, 9legov 26374 . . 3 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))))
4543, 44mpbid 234 . 2 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
4642, 45r19.29a 3292 1 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wrex 3142   class class class wbr 5069  cfv 6358  (class class class)co 7159  Basecbs 16486  distcds 16577  TarskiGcstrkg 26219  Itvcitv 26225  ≤Gcleg 26371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-concat 13926  df-s1 13953  df-s2 14213  df-s3 14214  df-trkgc 26237  df-trkgb 26238  df-trkgcb 26239  df-trkg 26242  df-cgrg 26300  df-leg 26372
This theorem is referenced by:  legeq  26382  legbtwn  26383  legso  26388
  Copyright terms: Public domain W3C validator