MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legtri3 Structured version   Visualization version   GIF version

Theorem legtri3 25385
Description: Equality from the less-than relationship. Proposition 5.9 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legid.a (𝜑𝐴𝑃)
legid.b (𝜑𝐵𝑃)
legtrd.c (𝜑𝐶𝑃)
legtrd.d (𝜑𝐷𝑃)
legtri3.1 (𝜑 → (𝐴 𝐵) (𝐶 𝐷))
legtri3.2 (𝜑 → (𝐶 𝐷) (𝐴 𝐵))
Assertion
Ref Expression
legtri3 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))

Proof of Theorem legtri3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 798 . . . . 5 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
21simprd 479 . . . 4 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐴 𝐵) = (𝐶 𝑥))
3 legval.p . . . . . 6 𝑃 = (Base‘𝐺)
4 legval.d . . . . . 6 = (dist‘𝐺)
5 legval.i . . . . . 6 𝐼 = (Itv‘𝐺)
6 legval.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
76ad4antr 767 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐺 ∈ TarskiG)
8 simp-4r 806 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥𝑃)
9 legtrd.d . . . . . . 7 (𝜑𝐷𝑃)
109ad4antr 767 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷𝑃)
11 legtrd.c . . . . . . 7 (𝜑𝐶𝑃)
1211ad4antr 767 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐶𝑃)
131simpld 475 . . . . . . 7 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥 ∈ (𝐶𝐼𝐷))
143, 4, 5, 7, 12, 8, 10, 13tgbtwncom 25283 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥 ∈ (𝐷𝐼𝐶))
15 simpr 477 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵)))
1615simpld 475 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷 ∈ (𝐶𝐼𝑦))
17 simplr 791 . . . . . . . . . 10 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑦𝑃)
18 legid.b . . . . . . . . . . 11 (𝜑𝐵𝑃)
1918ad4antr 767 . . . . . . . . . 10 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐵𝑃)
20 legid.a . . . . . . . . . . . 12 (𝜑𝐴𝑃)
2120ad4antr 767 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐴𝑃)
223, 4, 5, 7, 12, 10, 17, 16tgbtwncom 25283 . . . . . . . . . . . 12 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷 ∈ (𝑦𝐼𝐶))
233, 4, 5, 7, 17, 10, 8, 12, 22, 14tgbtwnexch2 25291 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥 ∈ (𝑦𝐼𝐶))
243, 4, 5, 7, 19, 21tgbtwntriv1 25286 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐵 ∈ (𝐵𝐼𝐴))
2515simprd 479 . . . . . . . . . . . 12 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐶 𝑦) = (𝐴 𝐵))
263, 4, 5, 7, 12, 17, 21, 19, 25tgcgrcomlr 25275 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝑦 𝐶) = (𝐵 𝐴))
272eqcomd 2627 . . . . . . . . . . . 12 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐶 𝑥) = (𝐴 𝐵))
283, 4, 5, 7, 12, 8, 21, 19, 27tgcgrcomlr 25275 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝑥 𝐶) = (𝐵 𝐴))
293, 4, 5, 7, 17, 8, 12, 19, 19, 21, 23, 24, 26, 28tgcgrsub 25304 . . . . . . . . . 10 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝑦 𝑥) = (𝐵 𝐵))
303, 4, 5, 7, 17, 8, 19, 29axtgcgrid 25262 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑦 = 𝑥)
3130oveq2d 6620 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐶𝐼𝑦) = (𝐶𝐼𝑥))
3216, 31eleqtrd 2700 . . . . . . 7 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷 ∈ (𝐶𝐼𝑥))
333, 4, 5, 7, 12, 10, 8, 32tgbtwncom 25283 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷 ∈ (𝑥𝐼𝐶))
343, 4, 5, 7, 8, 10, 12, 14, 33tgbtwnswapid 25287 . . . . 5 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥 = 𝐷)
3534oveq2d 6620 . . . 4 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐶 𝑥) = (𝐶 𝐷))
362, 35eqtrd 2655 . . 3 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐴 𝐵) = (𝐶 𝐷))
37 legtri3.2 . . . . 5 (𝜑 → (𝐶 𝐷) (𝐴 𝐵))
38 legval.l . . . . . 6 = (≤G‘𝐺)
393, 4, 5, 38, 6, 11, 9, 20, 18legov2 25381 . . . . 5 (𝜑 → ((𝐶 𝐷) (𝐴 𝐵) ↔ ∃𝑦𝑃 (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))))
4037, 39mpbid 222 . . . 4 (𝜑 → ∃𝑦𝑃 (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵)))
4140ad2antrr 761 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) → ∃𝑦𝑃 (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵)))
4236, 41r19.29a 3071 . 2 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) → (𝐴 𝐵) = (𝐶 𝐷))
43 legtri3.1 . . 3 (𝜑 → (𝐴 𝐵) (𝐶 𝐷))
443, 4, 5, 38, 6, 20, 18, 11, 9legov 25380 . . 3 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))))
4543, 44mpbid 222 . 2 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
4642, 45r19.29a 3071 1 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wrex 2908   class class class wbr 4613  cfv 5847  (class class class)co 6604  Basecbs 15781  distcds 15871  TarskiGcstrkg 25229  Itvcitv 25235  ≤Gcleg 25377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-concat 13240  df-s1 13241  df-s2 13530  df-s3 13531  df-trkgc 25247  df-trkgb 25248  df-trkgcb 25249  df-trkg 25252  df-cgrg 25306  df-leg 25378
This theorem is referenced by:  legeq  25388  legbtwn  25389  legso  25394
  Copyright terms: Public domain W3C validator