MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legtrid Structured version   Visualization version   GIF version

Theorem legtrid 25467
Description: Trichotomy law for the less-than relationship. Proposition 5.10 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legid.a (𝜑𝐴𝑃)
legid.b (𝜑𝐵𝑃)
legtrd.c (𝜑𝐶𝑃)
legtrd.d (𝜑𝐷𝑃)
Assertion
Ref Expression
legtrid (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)))

Proof of Theorem legtrid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 legval.p . . . . 5 𝑃 = (Base‘𝐺)
2 legval.d . . . . 5 = (dist‘𝐺)
3 legval.i . . . . 5 𝐼 = (Itv‘𝐺)
4 legval.l . . . . 5 = (≤G‘𝐺)
5 legval.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
65adantr 481 . . . . 5 ((𝜑 ∧ (#‘𝑃) = 1) → 𝐺 ∈ TarskiG)
7 legid.a . . . . . 6 (𝜑𝐴𝑃)
87adantr 481 . . . . 5 ((𝜑 ∧ (#‘𝑃) = 1) → 𝐴𝑃)
9 legid.b . . . . . 6 (𝜑𝐵𝑃)
109adantr 481 . . . . 5 ((𝜑 ∧ (#‘𝑃) = 1) → 𝐵𝑃)
111, 2, 3, 4, 6, 8, 10legid 25463 . . . 4 ((𝜑 ∧ (#‘𝑃) = 1) → (𝐴 𝐵) (𝐴 𝐵))
12 legtrd.c . . . . . 6 (𝜑𝐶𝑃)
1312adantr 481 . . . . 5 ((𝜑 ∧ (#‘𝑃) = 1) → 𝐶𝑃)
14 simpr 477 . . . . 5 ((𝜑 ∧ (#‘𝑃) = 1) → (#‘𝑃) = 1)
15 legtrd.d . . . . . 6 (𝜑𝐷𝑃)
1615adantr 481 . . . . 5 ((𝜑 ∧ (#‘𝑃) = 1) → 𝐷𝑃)
171, 2, 3, 6, 8, 10, 13, 14, 16tgldim0cgr 25381 . . . 4 ((𝜑 ∧ (#‘𝑃) = 1) → (𝐴 𝐵) = (𝐶 𝐷))
1811, 17breqtrd 4670 . . 3 ((𝜑 ∧ (#‘𝑃) = 1) → (𝐴 𝐵) (𝐶 𝐷))
1918orcd 407 . 2 ((𝜑 ∧ (#‘𝑃) = 1) → ((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)))
205ad3antrrr 765 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐺 ∈ TarskiG)
21 simplr 791 . . . . . . . . . 10 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → 𝑥𝑃)
2221adantr 481 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝑥𝑃)
237ad3antrrr 765 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐴𝑃)
249ad3antrrr 765 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐵𝑃)
25 simprl 793 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝑦𝑃)
26 simplrr 800 . . . . . . . . . 10 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐴𝑥)
2726necomd 2846 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝑥𝐴)
28 simplrl 799 . . . . . . . . . 10 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐴 ∈ (𝐵𝐼𝑥))
291, 2, 3, 20, 24, 23, 22, 28tgbtwncom 25364 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐴 ∈ (𝑥𝐼𝐵))
30 simprrl 803 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐴 ∈ (𝑥𝐼𝑦))
311, 3, 20, 22, 23, 24, 25, 27, 29, 30tgbtwnconn2 25452 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → (𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)))
32 simprrr 804 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → (𝐴 𝑦) = (𝐶 𝐷))
3331, 32jca 554 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)))
345ad2antrr 761 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → 𝐺 ∈ TarskiG)
357ad2antrr 761 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → 𝐴𝑃)
3612ad2antrr 761 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → 𝐶𝑃)
3715ad2antrr 761 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → 𝐷𝑃)
381, 2, 3, 34, 21, 35, 36, 37axtgsegcon 25344 . . . . . . 7 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → ∃𝑦𝑃 (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))
3933, 38reximddv 3015 . . . . . 6 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → ∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)))
4039adantllr 754 . . . . 5 ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → ∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)))
415adantr 481 . . . . . 6 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → 𝐺 ∈ TarskiG)
429adantr 481 . . . . . 6 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → 𝐵𝑃)
437adantr 481 . . . . . 6 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → 𝐴𝑃)
44 simpr 477 . . . . . 6 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → 2 ≤ (#‘𝑃))
451, 2, 3, 41, 42, 43, 44tgbtwndiff 25382 . . . . 5 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → ∃𝑥𝑃 (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥))
4640, 45r19.29a 3074 . . . 4 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → ∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)))
47 andir 911 . . . . . . 7 (((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ↔ ((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝑦) = (𝐶 𝐷))))
48 eqcom 2627 . . . . . . . . 9 ((𝐴 𝑦) = (𝐶 𝐷) ↔ (𝐶 𝐷) = (𝐴 𝑦))
4948anbi2i 729 . . . . . . . 8 ((𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ↔ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦)))
5049orbi2i 541 . . . . . . 7 (((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝑦) = (𝐶 𝐷))) ↔ ((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
5147, 50bitri 264 . . . . . 6 (((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ↔ ((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
5251rexbii 3037 . . . . 5 (∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ↔ ∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
53 r19.43 3088 . . . . 5 (∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))) ↔ (∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
5452, 53bitri 264 . . . 4 (∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ↔ (∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
5546, 54sylib 208 . . 3 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → (∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
561, 2, 3, 4, 5, 7, 9, 12, 15legov2 25462 . . . . 5 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷))))
571, 2, 3, 4, 5, 12, 15, 7, 9legov 25461 . . . . 5 (𝜑 → ((𝐶 𝐷) (𝐴 𝐵) ↔ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
5856, 57orbi12d 745 . . . 4 (𝜑 → (((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)) ↔ (∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦)))))
5958adantr 481 . . 3 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → (((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)) ↔ (∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦)))))
6055, 59mpbird 247 . 2 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → ((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)))
611, 7tgldimor 25378 . 2 (𝜑 → ((#‘𝑃) = 1 ∨ 2 ≤ (#‘𝑃)))
6219, 60, 61mpjaodan 826 1 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1481  wcel 1988  wne 2791  wrex 2910   class class class wbr 4644  cfv 5876  (class class class)co 6635  1c1 9922  cle 10060  2c2 11055  #chash 13100  Basecbs 15838  distcds 15931  TarskiGcstrkg 25310  Itvcitv 25316  ≤Gcleg 25458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-pm 7845  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-xnn0 11349  df-z 11363  df-uz 11673  df-fz 12312  df-fzo 12450  df-hash 13101  df-word 13282  df-concat 13284  df-s1 13285  df-s2 13574  df-s3 13575  df-trkgc 25328  df-trkgb 25329  df-trkgcb 25330  df-trkg 25333  df-cgrg 25387  df-leg 25459
This theorem is referenced by:  legso  25475  krippen  25567  midex  25610  opphllem5  25624  opphllem6  25625
  Copyright terms: Public domain W3C validator