MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legtrid Structured version   Visualization version   GIF version

Theorem legtrid 25200
Description: Trichotomy law for the less-than relationship. Proposition 5.10 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legid.a (𝜑𝐴𝑃)
legid.b (𝜑𝐵𝑃)
legtrd.c (𝜑𝐶𝑃)
legtrd.d (𝜑𝐷𝑃)
Assertion
Ref Expression
legtrid (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)))

Proof of Theorem legtrid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 legval.p . . . . 5 𝑃 = (Base‘𝐺)
2 legval.d . . . . 5 = (dist‘𝐺)
3 legval.i . . . . 5 𝐼 = (Itv‘𝐺)
4 legval.l . . . . 5 = (≤G‘𝐺)
5 legval.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
65adantr 479 . . . . 5 ((𝜑 ∧ (#‘𝑃) = 1) → 𝐺 ∈ TarskiG)
7 legid.a . . . . . 6 (𝜑𝐴𝑃)
87adantr 479 . . . . 5 ((𝜑 ∧ (#‘𝑃) = 1) → 𝐴𝑃)
9 legid.b . . . . . 6 (𝜑𝐵𝑃)
109adantr 479 . . . . 5 ((𝜑 ∧ (#‘𝑃) = 1) → 𝐵𝑃)
111, 2, 3, 4, 6, 8, 10legid 25196 . . . 4 ((𝜑 ∧ (#‘𝑃) = 1) → (𝐴 𝐵) (𝐴 𝐵))
12 legtrd.c . . . . . 6 (𝜑𝐶𝑃)
1312adantr 479 . . . . 5 ((𝜑 ∧ (#‘𝑃) = 1) → 𝐶𝑃)
14 simpr 475 . . . . 5 ((𝜑 ∧ (#‘𝑃) = 1) → (#‘𝑃) = 1)
15 legtrd.d . . . . . 6 (𝜑𝐷𝑃)
1615adantr 479 . . . . 5 ((𝜑 ∧ (#‘𝑃) = 1) → 𝐷𝑃)
171, 2, 3, 6, 8, 10, 13, 14, 16tgldim0cgr 25113 . . . 4 ((𝜑 ∧ (#‘𝑃) = 1) → (𝐴 𝐵) = (𝐶 𝐷))
1811, 17breqtrd 4599 . . 3 ((𝜑 ∧ (#‘𝑃) = 1) → (𝐴 𝐵) (𝐶 𝐷))
1918orcd 405 . 2 ((𝜑 ∧ (#‘𝑃) = 1) → ((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)))
205ad3antrrr 761 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐺 ∈ TarskiG)
21 simplr 787 . . . . . . . . . 10 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → 𝑥𝑃)
2221adantr 479 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝑥𝑃)
237ad3antrrr 761 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐴𝑃)
249ad3antrrr 761 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐵𝑃)
25 simprl 789 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝑦𝑃)
26 simplrr 796 . . . . . . . . . 10 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐴𝑥)
2726necomd 2832 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝑥𝐴)
28 simplrl 795 . . . . . . . . . 10 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐴 ∈ (𝐵𝐼𝑥))
291, 2, 3, 20, 24, 23, 22, 28tgbtwncom 25096 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐴 ∈ (𝑥𝐼𝐵))
30 simprrl 799 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐴 ∈ (𝑥𝐼𝑦))
311, 3, 20, 22, 23, 24, 25, 27, 29, 30tgbtwnconn2 25185 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → (𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)))
32 simprrr 800 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → (𝐴 𝑦) = (𝐶 𝐷))
3331, 32jca 552 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)))
345ad2antrr 757 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → 𝐺 ∈ TarskiG)
357ad2antrr 757 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → 𝐴𝑃)
3612ad2antrr 757 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → 𝐶𝑃)
3715ad2antrr 757 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → 𝐷𝑃)
381, 2, 3, 34, 21, 35, 36, 37axtgsegcon 25076 . . . . . . 7 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → ∃𝑦𝑃 (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))
3933, 38reximddv 2996 . . . . . 6 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → ∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)))
4039adantllr 750 . . . . 5 ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → ∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)))
415adantr 479 . . . . . 6 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → 𝐺 ∈ TarskiG)
429adantr 479 . . . . . 6 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → 𝐵𝑃)
437adantr 479 . . . . . 6 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → 𝐴𝑃)
44 simpr 475 . . . . . 6 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → 2 ≤ (#‘𝑃))
451, 2, 3, 41, 42, 43, 44tgbtwndiff 25114 . . . . 5 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → ∃𝑥𝑃 (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥))
4640, 45r19.29a 3055 . . . 4 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → ∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)))
47 andir 907 . . . . . . 7 (((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ↔ ((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝑦) = (𝐶 𝐷))))
48 eqcom 2612 . . . . . . . . 9 ((𝐴 𝑦) = (𝐶 𝐷) ↔ (𝐶 𝐷) = (𝐴 𝑦))
4948anbi2i 725 . . . . . . . 8 ((𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ↔ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦)))
5049orbi2i 539 . . . . . . 7 (((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝑦) = (𝐶 𝐷))) ↔ ((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
5147, 50bitri 262 . . . . . 6 (((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ↔ ((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
5251rexbii 3018 . . . . 5 (∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ↔ ∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
53 r19.43 3069 . . . . 5 (∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))) ↔ (∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
5452, 53bitri 262 . . . 4 (∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ↔ (∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
5546, 54sylib 206 . . 3 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → (∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
561, 2, 3, 4, 5, 7, 9, 12, 15legov2 25195 . . . . 5 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷))))
571, 2, 3, 4, 5, 12, 15, 7, 9legov 25194 . . . . 5 (𝜑 → ((𝐶 𝐷) (𝐴 𝐵) ↔ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
5856, 57orbi12d 741 . . . 4 (𝜑 → (((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)) ↔ (∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦)))))
5958adantr 479 . . 3 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → (((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)) ↔ (∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦)))))
6055, 59mpbird 245 . 2 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → ((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)))
611, 7tgldimor 25110 . 2 (𝜑 → ((#‘𝑃) = 1 ∨ 2 ≤ (#‘𝑃)))
6219, 60, 61mpjaodan 822 1 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wo 381  wa 382   = wceq 1474  wcel 1975  wne 2775  wrex 2892   class class class wbr 4573  cfv 5786  (class class class)co 6523  1c1 9789  cle 9927  2c2 10913  #chash 12930  Basecbs 15637  distcds 15719  TarskiGcstrkg 25042  Itvcitv 25048  ≤Gcleg 25191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-oadd 7424  df-er 7602  df-pm 7720  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-card 8621  df-cda 8846  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-nn 10864  df-2 10922  df-3 10923  df-n0 11136  df-z 11207  df-uz 11516  df-fz 12149  df-fzo 12286  df-hash 12931  df-word 13096  df-concat 13098  df-s1 13099  df-s2 13386  df-s3 13387  df-trkgc 25060  df-trkgb 25061  df-trkgcb 25062  df-trkg 25065  df-cgrg 25120  df-leg 25192
This theorem is referenced by:  legso  25208  krippen  25300  midex  25343  opphllem5  25357  opphllem6  25358
  Copyright terms: Public domain W3C validator