MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leidi Structured version   Visualization version   GIF version

Theorem leidi 10506
Description: 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
lt2.1 𝐴 ∈ ℝ
Assertion
Ref Expression
leidi 𝐴𝐴

Proof of Theorem leidi
StepHypRef Expression
1 lt2.1 . 2 𝐴 ∈ ℝ
2 leid 10077 . 2 (𝐴 ∈ ℝ → 𝐴𝐴)
31, 2ax-mp 5 1 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 1987   class class class wbr 4613  cr 9879  cle 10019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-pre-lttri 9954
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024
This theorem is referenced by:  1le1  10599  elimge0  10804  lemul1a  10821  0le0  11054  dfuzi  11412  fldiv4p1lem1div2  12576  facwordi  13016  sincos2sgn  14849  strle1  15894  cnfldfun  19677  dscmet  22287  tanabsge  24162  logneg  24238  log2ublem2  24574  emcllem6  24627  harmonicbnd3  24634  ppiublem2  24828  chebbnd1lem3  25060  rpvmasumlem  25076  axlowdimlem6  25727  umgrupgr  25893  umgrislfupgr  25913  usgrislfuspgr  25972  usgr2pthlem  26528  konigsberglem4  26983  lmat22e12  29664  lmat22e21  29665  lmat22e22  29666  oddpwdc  30194  bj-pinftynminfty  32744  lhe4.4ex1a  38007  fourierdlem112  39739  salexct3  39864  salgensscntex  39866  0ome  40047  wtgoldbnnsum4prm  40976  bgoldbnnsum3prm  40978
  Copyright terms: Public domain W3C validator