MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leltadd Structured version   Visualization version   GIF version

Theorem leltadd 11126
Description: Adding both sides of two orderings. (Contributed by NM, 15-Aug-2008.)
Assertion
Ref Expression
leltadd (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶𝐵 < 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷)))

Proof of Theorem leltadd
StepHypRef Expression
1 ltleadd 11125 . . . . 5 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((𝐵 < 𝐷𝐴𝐶) → (𝐵 + 𝐴) < (𝐷 + 𝐶)))
21ancomsd 468 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((𝐴𝐶𝐵 < 𝐷) → (𝐵 + 𝐴) < (𝐷 + 𝐶)))
32ancom2s 648 . . 3 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶𝐵 < 𝐷) → (𝐵 + 𝐴) < (𝐷 + 𝐶)))
43ancom1s 651 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶𝐵 < 𝐷) → (𝐵 + 𝐴) < (𝐷 + 𝐶)))
5 recn 10629 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
6 recn 10629 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
7 addcom 10828 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
85, 6, 7syl2an 597 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
9 recn 10629 . . . 4 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
10 recn 10629 . . . 4 (𝐷 ∈ ℝ → 𝐷 ∈ ℂ)
11 addcom 10828 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + 𝐷) = (𝐷 + 𝐶))
129, 10, 11syl2an 597 . . 3 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 + 𝐷) = (𝐷 + 𝐶))
138, 12breqan12d 5084 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + 𝐵) < (𝐶 + 𝐷) ↔ (𝐵 + 𝐴) < (𝐷 + 𝐶)))
144, 13sylibrd 261 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶𝐵 < 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114   class class class wbr 5068  (class class class)co 7158  cc 10537  cr 10538   + caddc 10542   < clt 10677  cle 10678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683
This theorem is referenced by:  lt2add  11127  addgegt0  11129  leltaddd  11264  fldiv  13231  dp2lt10  30562
  Copyright terms: Public domain W3C validator