MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul1a Structured version   Visualization version   GIF version

Theorem lemul1a 10829
Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
lemul1a (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))

Proof of Theorem lemul1a
StepHypRef Expression
1 0re 9992 . . . . . . 7 0 ∈ ℝ
2 leloe 10076 . . . . . . 7 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ 𝐶 ↔ (0 < 𝐶 ∨ 0 = 𝐶)))
31, 2mpan 705 . . . . . 6 (𝐶 ∈ ℝ → (0 ≤ 𝐶 ↔ (0 < 𝐶 ∨ 0 = 𝐶)))
43pm5.32i 668 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ↔ (𝐶 ∈ ℝ ∧ (0 < 𝐶 ∨ 0 = 𝐶)))
5 lemul1 10827 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
65biimpd 219 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
763expia 1264 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))))
87com12 32 . . . . . 6 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))))
91leidi 10514 . . . . . . . . . 10 0 ≤ 0
10 recn 9978 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1110mul01d 10187 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)
12 recn 9978 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
1312mul01d 10187 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐵 · 0) = 0)
1411, 13breqan12d 4634 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 0) ≤ (𝐵 · 0) ↔ 0 ≤ 0))
159, 14mpbiri 248 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 0) ≤ (𝐵 · 0))
16 oveq2 6618 . . . . . . . . . 10 (0 = 𝐶 → (𝐴 · 0) = (𝐴 · 𝐶))
17 oveq2 6618 . . . . . . . . . 10 (0 = 𝐶 → (𝐵 · 0) = (𝐵 · 𝐶))
1816, 17breq12d 4631 . . . . . . . . 9 (0 = 𝐶 → ((𝐴 · 0) ≤ (𝐵 · 0) ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
1915, 18syl5ib 234 . . . . . . . 8 (0 = 𝐶 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
2019a1dd 50 . . . . . . 7 (0 = 𝐶 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))))
2120adantl 482 . . . . . 6 ((𝐶 ∈ ℝ ∧ 0 = 𝐶) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))))
228, 21jaodan 825 . . . . 5 ((𝐶 ∈ ℝ ∧ (0 < 𝐶 ∨ 0 = 𝐶)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))))
234, 22sylbi 207 . . . 4 ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))))
2423com12 32 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))))
25243impia 1258 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
2625imp 445 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4618  (class class class)co 6610  cr 9887  0cc0 9888   · cmul 9893   < clt 10026  cle 10027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221
This theorem is referenced by:  lemul2a  10830  ltmul12a  10831  lemul12b  10832  lt2msq1  10859  lemul1ad  10915  faclbnd4lem1  13028  facavg  13036  mulcn2  14268  o1fsum  14483  eftlub  14775  bddmulibl  23528  cxpaddlelem  24409  dchrmusum2  25100  axcontlem7  25767  nmoub3i  27498  siilem1  27576  ubthlem3  27598  bcs2  27909  cnlnadjlem2  28797  leopnmid  28867  eulerpartlemgc  30229  rrntotbnd  33302  jm2.17a  37042
  Copyright terms: Public domain W3C validator