MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul1a Structured version   Visualization version   GIF version

Theorem lemul1a 11488
Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
lemul1a (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))

Proof of Theorem lemul1a
StepHypRef Expression
1 0re 10637 . . . . . . 7 0 ∈ ℝ
2 leloe 10721 . . . . . . 7 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ 𝐶 ↔ (0 < 𝐶 ∨ 0 = 𝐶)))
31, 2mpan 688 . . . . . 6 (𝐶 ∈ ℝ → (0 ≤ 𝐶 ↔ (0 < 𝐶 ∨ 0 = 𝐶)))
43pm5.32i 577 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ↔ (𝐶 ∈ ℝ ∧ (0 < 𝐶 ∨ 0 = 𝐶)))
5 lemul1 11486 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
65biimpd 231 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
763expia 1117 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))))
87com12 32 . . . . . 6 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))))
91leidi 11168 . . . . . . . . . 10 0 ≤ 0
10 recn 10621 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1110mul01d 10833 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)
12 recn 10621 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
1312mul01d 10833 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐵 · 0) = 0)
1411, 13breqan12d 5074 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 0) ≤ (𝐵 · 0) ↔ 0 ≤ 0))
159, 14mpbiri 260 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 0) ≤ (𝐵 · 0))
16 oveq2 7158 . . . . . . . . . 10 (0 = 𝐶 → (𝐴 · 0) = (𝐴 · 𝐶))
17 oveq2 7158 . . . . . . . . . 10 (0 = 𝐶 → (𝐵 · 0) = (𝐵 · 𝐶))
1816, 17breq12d 5071 . . . . . . . . 9 (0 = 𝐶 → ((𝐴 · 0) ≤ (𝐵 · 0) ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
1915, 18syl5ib 246 . . . . . . . 8 (0 = 𝐶 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
2019a1dd 50 . . . . . . 7 (0 = 𝐶 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))))
2120adantl 484 . . . . . 6 ((𝐶 ∈ ℝ ∧ 0 = 𝐶) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))))
228, 21jaodan 954 . . . . 5 ((𝐶 ∈ ℝ ∧ (0 < 𝐶 ∨ 0 = 𝐶)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))))
234, 22sylbi 219 . . . 4 ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))))
2423com12 32 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))))
25243impia 1113 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
2625imp 409 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110   class class class wbr 5058  (class class class)co 7150  cr 10530  0cc0 10531   · cmul 10536   < clt 10669  cle 10670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867
This theorem is referenced by:  lemul2a  11489  ltmul12a  11490  lemul12b  11491  lt2msq1  11518  lemul1ad  11573  faclbnd4lem1  13647  facavg  13655  mulcn2  14946  o1fsum  15162  eftlub  15456  bddmulibl  24433  cxpaddlelem  25326  dchrmusum2  26064  axcontlem7  26750  nmoub3i  28544  siilem1  28622  ubthlem3  28643  bcs2  28953  cnlnadjlem2  29839  leopnmid  29909  eulerpartlemgc  31615  rrntotbnd  35108  jm2.17a  39550
  Copyright terms: Public domain W3C validator