MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul1ad Structured version   Visualization version   GIF version

Theorem lemul1ad 10812
Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltp1d.1 (𝜑𝐴 ∈ ℝ)
divgt0d.2 (𝜑𝐵 ∈ ℝ)
lemul1ad.3 (𝜑𝐶 ∈ ℝ)
lemul1ad.4 (𝜑 → 0 ≤ 𝐶)
lemul1ad.5 (𝜑𝐴𝐵)
Assertion
Ref Expression
lemul1ad (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))

Proof of Theorem lemul1ad
StepHypRef Expression
1 ltp1d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 divgt0d.2 . 2 (𝜑𝐵 ∈ ℝ)
3 lemul1ad.3 . . 3 (𝜑𝐶 ∈ ℝ)
4 lemul1ad.4 . . 3 (𝜑 → 0 ≤ 𝐶)
53, 4jca 552 . 2 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
6 lemul1ad.5 . 2 (𝜑𝐴𝐵)
7 lemul1a 10726 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
81, 2, 5, 6, 7syl31anc 1320 1 (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wcel 1976   class class class wbr 4577  (class class class)co 6527  cr 9791  0cc0 9792   · cmul 9797  cle 9931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-po 4949  df-so 4950  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120
This theorem is referenced by:  bernneq  12807  o1fsum  14332  cvgrat  14400  prmreclem3  15406  nlmvscnlem2  22232  nghmcn  22291  ipcnlem2  22769  dvlip  23477  dvlipcn  23478  dvfsumlem4  23513  dvfsum2  23518  aalioulem3  23810  radcnvlem1  23888  radcnvlem2  23889  abelthlem5  23910  abelthlem7  23913  logtayllem  24122  abscxpbnd  24211  efrlim  24413  lgamgulmlem5  24476  chpub  24662  2sqlem8  24868  rplogsumlem1  24890  rpvmasumlem  24893  dchrisumlem3  24897  dchrvmasumlem3  24905  mulog2sumlem2  24941  selberglem2  24952  selberg2lem  24956  pntrlog2bndlem3  24985  pntrlog2bndlem5  24987  pntlemj  25009  ostth2lem2  25040  axpaschlem  25538  smcnlem  26737  htthlem  26964  lnconi  28082  cnlnadjlem7  28122  nexple  29205  bfplem2  32588  jm2.24nn  36340  areaquad  36617  int-ineq2ndprincd  37314  fmul01lt1lem2  38449  dvbdfbdioolem1  38615  fourierdlem19  38816  fourierdlem39  38836  hsphoidmvle2  39272  hsphoidmvle  39273  hoidmvlelem2  39283  smfmullem1  39473
  Copyright terms: Public domain W3C validator