MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lenegsq Structured version   Visualization version   GIF version

Theorem lenegsq 13997
Description: Comparison to a nonnegative number based on comparison to squares. (Contributed by NM, 16-Jan-2006.)
Assertion
Ref Expression
lenegsq ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴𝐵 ∧ -𝐴𝐵) ↔ (𝐴↑2) ≤ (𝐵↑2)))

Proof of Theorem lenegsq
StepHypRef Expression
1 recn 9973 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 abscl 13955 . . . . . 6 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
3 absge0 13964 . . . . . 6 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
42, 3jca 554 . . . . 5 (𝐴 ∈ ℂ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
51, 4syl 17 . . . 4 (𝐴 ∈ ℝ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
6 le2sq 12881 . . . 4 ((((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((abs‘𝐴) ≤ 𝐵 ↔ ((abs‘𝐴)↑2) ≤ (𝐵↑2)))
75, 6sylan 488 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((abs‘𝐴) ≤ 𝐵 ↔ ((abs‘𝐴)↑2) ≤ (𝐵↑2)))
8 absle 13992 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵𝐴𝐴𝐵)))
9 ancom 466 . . . . . 6 ((-𝐴𝐵𝐴𝐵) ↔ (𝐴𝐵 ∧ -𝐴𝐵))
10 lenegcon1 10479 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴𝐵 ↔ -𝐵𝐴))
1110anbi1d 740 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴𝐵𝐴𝐵) ↔ (-𝐵𝐴𝐴𝐵)))
129, 11syl5rbbr 275 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐵𝐴𝐴𝐵) ↔ (𝐴𝐵 ∧ -𝐴𝐵)))
138, 12bitrd 268 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (𝐴𝐵 ∧ -𝐴𝐵)))
1413adantrr 752 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((abs‘𝐴) ≤ 𝐵 ↔ (𝐴𝐵 ∧ -𝐴𝐵)))
15 absresq 13979 . . . . 5 (𝐴 ∈ ℝ → ((abs‘𝐴)↑2) = (𝐴↑2))
1615breq1d 4625 . . . 4 (𝐴 ∈ ℝ → (((abs‘𝐴)↑2) ≤ (𝐵↑2) ↔ (𝐴↑2) ≤ (𝐵↑2)))
1716adantr 481 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((abs‘𝐴)↑2) ≤ (𝐵↑2) ↔ (𝐴↑2) ≤ (𝐵↑2)))
187, 14, 173bitr3d 298 . 2 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴𝐵 ∧ -𝐴𝐵) ↔ (𝐴↑2) ≤ (𝐵↑2)))
19183impb 1257 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴𝐵 ∧ -𝐴𝐵) ↔ (𝐴↑2) ≤ (𝐵↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036  wcel 1987   class class class wbr 4615  cfv 5849  (class class class)co 6607  cc 9881  cr 9882  0cc0 9883  cle 10022  -cneg 10214  2c2 11017  cexp 12803  abscabs 13911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-sup 8295  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-n0 11240  df-z 11325  df-uz 11635  df-rp 11780  df-seq 12745  df-exp 12804  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913
This theorem is referenced by:  sinbnd  14838  cosbnd  14839  4sqlem7  15575
  Copyright terms: Public domain W3C validator