![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > leopmul | Structured version Visualization version GIF version |
Description: The scalar product of a positive real and a positive operator is a positive operator. Exercise 1(ii) of [Retherford] p. 49. (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
leopmul | ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → ( 0hop ≤op 𝑇 ↔ 0hop ≤op (𝐴 ·op 𝑇))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 1078 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp)) | |
2 | 1 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op 𝑇) → (𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp)) |
3 | 0re 10078 | . . . . . 6 ⊢ 0 ∈ ℝ | |
4 | ltle 10164 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) | |
5 | 4 | 3impia 1280 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 𝐴) |
6 | 3, 5 | mp3an1 1451 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 𝐴) |
7 | 6 | 3adant2 1100 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → 0 ≤ 𝐴) |
8 | 7 | anim1i 591 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op 𝑇) → (0 ≤ 𝐴 ∧ 0hop ≤op 𝑇)) |
9 | leopmuli 29120 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (0 ≤ 𝐴 ∧ 0hop ≤op 𝑇)) → 0hop ≤op (𝐴 ·op 𝑇)) | |
10 | 2, 8, 9 | syl2anc 694 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op 𝑇) → 0hop ≤op (𝐴 ·op 𝑇)) |
11 | gt0ne0 10531 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
12 | rereccl 10781 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ) | |
13 | 11, 12 | syldan 486 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ) |
14 | 13 | 3adant2 1100 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ) |
15 | hmopm 29008 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ·op 𝑇) ∈ HrmOp) | |
16 | 15 | 3adant3 1101 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (𝐴 ·op 𝑇) ∈ HrmOp) |
17 | recgt0 10905 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴)) | |
18 | ltle 10164 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) → 0 ≤ (1 / 𝐴))) | |
19 | 3, 13, 18 | sylancr 696 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < (1 / 𝐴) → 0 ≤ (1 / 𝐴))) |
20 | 17, 19 | mpd 15 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ (1 / 𝐴)) |
21 | 20 | 3adant2 1100 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → 0 ≤ (1 / 𝐴)) |
22 | 14, 16, 21 | jca31 556 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (((1 / 𝐴) ∈ ℝ ∧ (𝐴 ·op 𝑇) ∈ HrmOp) ∧ 0 ≤ (1 / 𝐴))) |
23 | leopmuli 29120 | . . . . 5 ⊢ ((((1 / 𝐴) ∈ ℝ ∧ (𝐴 ·op 𝑇) ∈ HrmOp) ∧ (0 ≤ (1 / 𝐴) ∧ 0hop ≤op (𝐴 ·op 𝑇))) → 0hop ≤op ((1 / 𝐴) ·op (𝐴 ·op 𝑇))) | |
24 | 23 | anassrs 681 | . . . 4 ⊢ (((((1 / 𝐴) ∈ ℝ ∧ (𝐴 ·op 𝑇) ∈ HrmOp) ∧ 0 ≤ (1 / 𝐴)) ∧ 0hop ≤op (𝐴 ·op 𝑇)) → 0hop ≤op ((1 / 𝐴) ·op (𝐴 ·op 𝑇))) |
25 | 22, 24 | sylan 487 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op (𝐴 ·op 𝑇)) → 0hop ≤op ((1 / 𝐴) ·op (𝐴 ·op 𝑇))) |
26 | recn 10064 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
27 | 26 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ) |
28 | 27, 11 | recid2d 10835 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) · 𝐴) = 1) |
29 | 28 | oveq1d 6705 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (((1 / 𝐴) · 𝐴) ·op 𝑇) = (1 ·op 𝑇)) |
30 | 29 | 3adant2 1100 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (((1 / 𝐴) · 𝐴) ·op 𝑇) = (1 ·op 𝑇)) |
31 | 27, 11 | reccld 10832 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ) |
32 | 31 | 3adant2 1100 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ) |
33 | 26 | 3ad2ant1 1102 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → 𝐴 ∈ ℂ) |
34 | hmopf 28861 | . . . . . . 7 ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) | |
35 | 34 | 3ad2ant2 1103 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → 𝑇: ℋ⟶ ℋ) |
36 | homulass 28789 | . . . . . 6 ⊢ (((1 / 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (((1 / 𝐴) · 𝐴) ·op 𝑇) = ((1 / 𝐴) ·op (𝐴 ·op 𝑇))) | |
37 | 32, 33, 35, 36 | syl3anc 1366 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (((1 / 𝐴) · 𝐴) ·op 𝑇) = ((1 / 𝐴) ·op (𝐴 ·op 𝑇))) |
38 | homulid2 28787 | . . . . . . 7 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇) | |
39 | 34, 38 | syl 17 | . . . . . 6 ⊢ (𝑇 ∈ HrmOp → (1 ·op 𝑇) = 𝑇) |
40 | 39 | 3ad2ant2 1103 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (1 ·op 𝑇) = 𝑇) |
41 | 30, 37, 40 | 3eqtr3d 2693 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → ((1 / 𝐴) ·op (𝐴 ·op 𝑇)) = 𝑇) |
42 | 41 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op (𝐴 ·op 𝑇)) → ((1 / 𝐴) ·op (𝐴 ·op 𝑇)) = 𝑇) |
43 | 25, 42 | breqtrd 4711 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op (𝐴 ·op 𝑇)) → 0hop ≤op 𝑇) |
44 | 10, 43 | impbida 895 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → ( 0hop ≤op 𝑇 ↔ 0hop ≤op (𝐴 ·op 𝑇))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 class class class wbr 4685 ⟶wf 5922 (class class class)co 6690 ℂcc 9972 ℝcr 9973 0cc0 9974 1c1 9975 · cmul 9979 < clt 10112 ≤ cle 10113 / cdiv 10722 ℋchil 27904 ·op chot 27924 0hop ch0o 27928 HrmOpcho 27935 ≤op cleo 27943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cc 9295 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-addf 10053 ax-mulf 10054 ax-hilex 27984 ax-hfvadd 27985 ax-hvcom 27986 ax-hvass 27987 ax-hv0cl 27988 ax-hvaddid 27989 ax-hfvmul 27990 ax-hvmulid 27991 ax-hvmulass 27992 ax-hvdistr1 27993 ax-hvdistr2 27994 ax-hvmul0 27995 ax-hfi 28064 ax-his1 28067 ax-his2 28068 ax-his3 28069 ax-his4 28070 ax-hcompl 28187 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-omul 7610 df-er 7787 df-map 7901 df-pm 7902 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-fi 8358 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-acn 8806 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-q 11827 df-rp 11871 df-xneg 11984 df-xadd 11985 df-xmul 11986 df-ioo 12217 df-ico 12219 df-icc 12220 df-fz 12365 df-fzo 12505 df-fl 12633 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-rlim 14264 df-sum 14461 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-starv 16003 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-hom 16013 df-cco 16014 df-rest 16130 df-topn 16131 df-0g 16149 df-gsum 16150 df-topgen 16151 df-pt 16152 df-prds 16155 df-xrs 16209 df-qtop 16214 df-imas 16215 df-xps 16217 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-submnd 17383 df-mulg 17588 df-cntz 17796 df-cmn 18241 df-psmet 19786 df-xmet 19787 df-met 19788 df-bl 19789 df-mopn 19790 df-fbas 19791 df-fg 19792 df-cnfld 19795 df-top 20747 df-topon 20764 df-topsp 20785 df-bases 20798 df-cld 20871 df-ntr 20872 df-cls 20873 df-nei 20950 df-cn 21079 df-cnp 21080 df-lm 21081 df-haus 21167 df-tx 21413 df-hmeo 21606 df-fil 21697 df-fm 21789 df-flim 21790 df-flf 21791 df-xms 22172 df-ms 22173 df-tms 22174 df-cfil 23099 df-cau 23100 df-cmet 23101 df-grpo 27475 df-gid 27476 df-ginv 27477 df-gdiv 27478 df-ablo 27527 df-vc 27542 df-nv 27575 df-va 27578 df-ba 27579 df-sm 27580 df-0v 27581 df-vs 27582 df-nmcv 27583 df-ims 27584 df-dip 27684 df-ssp 27705 df-ph 27796 df-cbn 27847 df-hnorm 27953 df-hba 27954 df-hvsub 27956 df-hlim 27957 df-hcau 27958 df-sh 28192 df-ch 28206 df-oc 28237 df-ch0 28238 df-shs 28295 df-pjh 28382 df-hosum 28717 df-homul 28718 df-hodif 28719 df-h0op 28735 df-hmop 28831 df-leop 28839 |
This theorem is referenced by: opsqrlem6 29132 |
Copyright terms: Public domain | W3C validator |