HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  leopnmid Structured version   Visualization version   GIF version

Theorem leopnmid 29918
Description: A bounded Hermitian operator is less than or equal to its norm times the identity operator. (Contributed by NM, 11-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
leopnmid ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → 𝑇op ((normop𝑇) ·op Iop ))

Proof of Theorem leopnmid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hmopre 29703 . . . . 5 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ∈ ℝ)
21adantlr 713 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ∈ ℝ)
31recnd 10672 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ∈ ℂ)
43abscld 14799 . . . . 5 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ∈ ℝ)
54adantlr 713 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ∈ ℝ)
6 idhmop 29762 . . . . . . 7 Iop ∈ HrmOp
7 hmopm 29801 . . . . . . 7 (((normop𝑇) ∈ ℝ ∧ Iop ∈ HrmOp) → ((normop𝑇) ·op Iop ) ∈ HrmOp)
86, 7mpan2 689 . . . . . 6 ((normop𝑇) ∈ ℝ → ((normop𝑇) ·op Iop ) ∈ HrmOp)
9 hmopre 29703 . . . . . 6 ((((normop𝑇) ·op Iop ) ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥) ∈ ℝ)
108, 9sylan 582 . . . . 5 (((normop𝑇) ∈ ℝ ∧ 𝑥 ∈ ℋ) → ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥) ∈ ℝ)
1110adantll 712 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥) ∈ ℝ)
121leabsd 14777 . . . . 5 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ≤ (abs‘((𝑇𝑥) ·ih 𝑥)))
1312adantlr 713 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ≤ (abs‘((𝑇𝑥) ·ih 𝑥)))
14 hmopf 29654 . . . . . . . 8 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
15 ffvelrn 6852 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
16 normcl 28905 . . . . . . . . 9 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
1715, 16syl 17 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ∈ ℝ)
1814, 17sylan 582 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ∈ ℝ)
1918adantlr 713 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ∈ ℝ)
20 normcl 28905 . . . . . . 7 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
2120adantl 484 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (norm𝑥) ∈ ℝ)
2219, 21remulcld 10674 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) · (norm𝑥)) ∈ ℝ)
2314, 15sylan 582 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
24 bcs 28961 . . . . . . 7 (((𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ≤ ((norm‘(𝑇𝑥)) · (norm𝑥)))
2523, 24sylancom 590 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ≤ ((norm‘(𝑇𝑥)) · (norm𝑥)))
2625adantlr 713 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ≤ ((norm‘(𝑇𝑥)) · (norm𝑥)))
27 remulcl 10625 . . . . . . . . 9 (((normop𝑇) ∈ ℝ ∧ (norm𝑥) ∈ ℝ) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
2820, 27sylan2 594 . . . . . . . 8 (((normop𝑇) ∈ ℝ ∧ 𝑥 ∈ ℋ) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
2928adantll 712 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
30 normge0 28906 . . . . . . . . 9 (𝑥 ∈ ℋ → 0 ≤ (norm𝑥))
3120, 30jca 514 . . . . . . . 8 (𝑥 ∈ ℋ → ((norm𝑥) ∈ ℝ ∧ 0 ≤ (norm𝑥)))
3231adantl 484 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((norm𝑥) ∈ ℝ ∧ 0 ≤ (norm𝑥)))
33 hmoplin 29722 . . . . . . . . 9 (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)
34 elbdop2 29651 . . . . . . . . . 10 (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop𝑇) ∈ ℝ))
3534biimpri 230 . . . . . . . . 9 ((𝑇 ∈ LinOp ∧ (normop𝑇) ∈ ℝ) → 𝑇 ∈ BndLinOp)
3633, 35sylan 582 . . . . . . . 8 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → 𝑇 ∈ BndLinOp)
37 nmbdoplb 29805 . . . . . . . 8 ((𝑇 ∈ BndLinOp ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥)))
3836, 37sylan 582 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥)))
39 lemul1a 11497 . . . . . . 7 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ ((normop𝑇) · (norm𝑥)) ∈ ℝ ∧ ((norm𝑥) ∈ ℝ ∧ 0 ≤ (norm𝑥))) ∧ (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥))) → ((norm‘(𝑇𝑥)) · (norm𝑥)) ≤ (((normop𝑇) · (norm𝑥)) · (norm𝑥)))
4019, 29, 32, 38, 39syl31anc 1369 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) · (norm𝑥)) ≤ (((normop𝑇) · (norm𝑥)) · (norm𝑥)))
41 recn 10630 . . . . . . . . . 10 ((normop𝑇) ∈ ℝ → (normop𝑇) ∈ ℂ)
4241ad2antlr 725 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (normop𝑇) ∈ ℂ)
4321recnd 10672 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (norm𝑥) ∈ ℂ)
4442, 43, 43mulassd 10667 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · (norm𝑥)) · (norm𝑥)) = ((normop𝑇) · ((norm𝑥) · (norm𝑥))))
45 simpr 487 . . . . . . . . . 10 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
46 ax-his3 28864 . . . . . . . . . 10 (((normop𝑇) ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · 𝑥) ·ih 𝑥) = ((normop𝑇) · (𝑥 ·ih 𝑥)))
4742, 45, 45, 46syl3anc 1367 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · 𝑥) ·ih 𝑥) = ((normop𝑇) · (𝑥 ·ih 𝑥)))
4820recnd 10672 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℂ)
4948sqvald 13510 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((norm𝑥)↑2) = ((norm𝑥) · (norm𝑥)))
50 normsq 28914 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((norm𝑥)↑2) = (𝑥 ·ih 𝑥))
5149, 50eqtr3d 2861 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((norm𝑥) · (norm𝑥)) = (𝑥 ·ih 𝑥))
5251oveq2d 7175 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((normop𝑇) · ((norm𝑥) · (norm𝑥))) = ((normop𝑇) · (𝑥 ·ih 𝑥)))
5352adantl 484 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((normop𝑇) · ((norm𝑥) · (norm𝑥))) = ((normop𝑇) · (𝑥 ·ih 𝑥)))
5447, 53eqtr4d 2862 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · 𝑥) ·ih 𝑥) = ((normop𝑇) · ((norm𝑥) · (norm𝑥))))
5544, 54eqtr4d 2862 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · (norm𝑥)) · (norm𝑥)) = (((normop𝑇) · 𝑥) ·ih 𝑥))
56 hoif 29534 . . . . . . . . . . 11 Iop : ℋ–1-1-onto→ ℋ
57 f1of 6618 . . . . . . . . . . 11 ( Iop : ℋ–1-1-onto→ ℋ → Iop : ℋ⟶ ℋ)
5856, 57mp1i 13 . . . . . . . . . 10 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → Iop : ℋ⟶ ℋ)
59 homval 29521 . . . . . . . . . 10 (((normop𝑇) ∈ ℂ ∧ Iop : ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((normop𝑇) ·op Iop )‘𝑥) = ((normop𝑇) · ( Iop𝑥)))
6042, 58, 45, 59syl3anc 1367 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) ·op Iop )‘𝑥) = ((normop𝑇) · ( Iop𝑥)))
61 hoival 29535 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ( Iop𝑥) = 𝑥)
6261oveq2d 7175 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((normop𝑇) · ( Iop𝑥)) = ((normop𝑇) · 𝑥))
6362adantl 484 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((normop𝑇) · ( Iop𝑥)) = ((normop𝑇) · 𝑥))
6460, 63eqtrd 2859 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) ·op Iop )‘𝑥) = ((normop𝑇) · 𝑥))
6564oveq1d 7174 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥) = (((normop𝑇) · 𝑥) ·ih 𝑥))
6655, 65eqtr4d 2862 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · (norm𝑥)) · (norm𝑥)) = ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
6740, 66breqtrd 5095 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) · (norm𝑥)) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
685, 22, 11, 26, 67letrd 10800 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
692, 5, 11, 13, 68letrd 10800 . . 3 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
7069ralrimiva 3185 . 2 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝑥) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
71 leop2 29904 . . 3 ((𝑇 ∈ HrmOp ∧ ((normop𝑇) ·op Iop ) ∈ HrmOp) → (𝑇op ((normop𝑇) ·op Iop ) ↔ ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝑥) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥)))
728, 71sylan2 594 . 2 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → (𝑇op ((normop𝑇) ·op Iop ) ↔ ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝑥) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥)))
7370, 72mpbird 259 1 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → 𝑇op ((normop𝑇) ·op Iop ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wral 3141   class class class wbr 5069  wf 6354  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540   · cmul 10545  cle 10679  2c2 11695  cexp 13432  abscabs 14596  chba 28699   · csm 28701   ·ih csp 28702  normcno 28703   ·op chot 28719   Iop chio 28724  normopcnop 28725  LinOpclo 28727  BndLinOpcbo 28728  HrmOpcho 28730  op cleo 28738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cc 9860  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620  ax-hilex 28779  ax-hfvadd 28780  ax-hvcom 28781  ax-hvass 28782  ax-hv0cl 28783  ax-hvaddid 28784  ax-hfvmul 28785  ax-hvmulid 28786  ax-hvmulass 28787  ax-hvdistr1 28788  ax-hvdistr2 28789  ax-hvmul0 28790  ax-hfi 28859  ax-his1 28862  ax-his2 28863  ax-his3 28864  ax-his4 28865  ax-hcompl 28982
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-omul 8110  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-acn 9374  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-rlim 14849  df-sum 15046  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-cn 21838  df-cnp 21839  df-lm 21840  df-t1 21925  df-haus 21926  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cfil 23861  df-cau 23862  df-cmet 23863  df-grpo 28273  df-gid 28274  df-ginv 28275  df-gdiv 28276  df-ablo 28325  df-vc 28339  df-nv 28372  df-va 28375  df-ba 28376  df-sm 28377  df-0v 28378  df-vs 28379  df-nmcv 28380  df-ims 28381  df-dip 28481  df-ssp 28502  df-ph 28593  df-cbn 28643  df-hnorm 28748  df-hba 28749  df-hvsub 28751  df-hlim 28752  df-hcau 28753  df-sh 28987  df-ch 29001  df-oc 29032  df-ch0 29033  df-shs 29088  df-pjh 29175  df-hosum 29510  df-homul 29511  df-hodif 29512  df-h0op 29528  df-iop 29529  df-nmop 29619  df-lnop 29621  df-bdop 29622  df-hmop 29624  df-leop 29632
This theorem is referenced by:  nmopleid  29919
  Copyright terms: Public domain W3C validator