MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtvallem1 Structured version   Visualization version   GIF version

Theorem leordtvallem1 21746
Description: Lemma for leordtval 21749. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
leordtval.1 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
Assertion
Ref Expression
leordtvallem1 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem leordtvallem1
StepHypRef Expression
1 leordtval.1 . 2 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
2 iocssxr 12808 . . . . . 6 (𝑥(,]+∞) ⊆ ℝ*
3 sseqin2 4189 . . . . . 6 ((𝑥(,]+∞) ⊆ ℝ* ↔ (ℝ* ∩ (𝑥(,]+∞)) = (𝑥(,]+∞))
42, 3mpbi 231 . . . . 5 (ℝ* ∩ (𝑥(,]+∞)) = (𝑥(,]+∞)
5 simpl 483 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*)
6 pnfxr 10683 . . . . . . . 8 +∞ ∈ ℝ*
7 elioc1 12768 . . . . . . . 8 ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑦 ∈ ℝ*𝑥 < 𝑦𝑦 ≤ +∞)))
85, 6, 7sylancl 586 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑦 ∈ ℝ*𝑥 < 𝑦𝑦 ≤ +∞)))
9 simpr 485 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
10 pnfge 12513 . . . . . . . . . 10 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
119, 10jccir 522 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ ℝ*𝑦 ≤ +∞))
1211biantrurd 533 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ((𝑦 ∈ ℝ*𝑦 ≤ +∞) ∧ 𝑥 < 𝑦)))
13 3anan32 1089 . . . . . . . 8 ((𝑦 ∈ ℝ*𝑥 < 𝑦𝑦 ≤ +∞) ↔ ((𝑦 ∈ ℝ*𝑦 ≤ +∞) ∧ 𝑥 < 𝑦))
1412, 13syl6bbr 290 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑦 ∈ ℝ*𝑥 < 𝑦𝑦 ≤ +∞)))
15 xrltnle 10696 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
168, 14, 153bitr2d 308 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ ¬ 𝑦𝑥))
1716rabbi2dva 4191 . . . . 5 (𝑥 ∈ ℝ* → (ℝ* ∩ (𝑥(,]+∞)) = {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
184, 17syl5eqr 2867 . . . 4 (𝑥 ∈ ℝ* → (𝑥(,]+∞) = {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
1918mpteq2ia 5148 . . 3 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
2019rneqi 5800 . 2 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
211, 20eqtri 2841 1 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  {crab 3139  cin 3932  wss 3933   class class class wbr 5057  cmpt 5137  ran crn 5549  (class class class)co 7145  +∞cpnf 10660  *cxr 10662   < clt 10663  cle 10664  (,]cioc 12727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-ioc 12731
This theorem is referenced by:  leordtval2  21748  leordtval  21749
  Copyright terms: Public domain W3C validator