MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lesub0 Structured version   Visualization version   GIF version

Theorem lesub0 10757
Description: Lemma to show a nonnegative number is zero. (Contributed by NM, 8-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
lesub0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴𝐵 ≤ (𝐵𝐴)) ↔ 𝐴 = 0))

Proof of Theorem lesub0
StepHypRef Expression
1 0red 10253 . . 3 (𝐵 ∈ ℝ → 0 ∈ ℝ)
2 letri3 10335 . . 3 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴)))
31, 2sylan2 492 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴)))
4 ancom 465 . . 3 ((𝐴 ≤ 0 ∧ 0 ≤ 𝐴) ↔ (0 ≤ 𝐴𝐴 ≤ 0))
5 simpr 479 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
6 0red 10253 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 0 ∈ ℝ)
7 simpl 474 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ)
8 lesub2 10735 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 0 ↔ (𝐵 − 0) ≤ (𝐵𝐴)))
95, 6, 7, 8syl3anc 1477 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 ≤ 0 ↔ (𝐵 − 0) ≤ (𝐵𝐴)))
107recnd 10280 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℂ)
1110subid1d 10593 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 − 0) = 𝐵)
1211breq1d 4814 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 − 0) ≤ (𝐵𝐴) ↔ 𝐵 ≤ (𝐵𝐴)))
139, 12bitrd 268 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 ≤ 0 ↔ 𝐵 ≤ (𝐵𝐴)))
1413ancoms 468 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 0 ↔ 𝐵 ≤ (𝐵𝐴)))
1514anbi2d 742 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴𝐴 ≤ 0) ↔ (0 ≤ 𝐴𝐵 ≤ (𝐵𝐴))))
164, 15syl5bb 272 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 0 ∧ 0 ≤ 𝐴) ↔ (0 ≤ 𝐴𝐵 ≤ (𝐵𝐴))))
173, 16bitr2d 269 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴𝐵 ≤ (𝐵𝐴)) ↔ 𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139   class class class wbr 4804  (class class class)co 6814  cr 10147  0cc0 10148  cle 10287  cmin 10478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481
This theorem is referenced by:  lesub0i  10788
  Copyright terms: Public domain W3C validator