![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lesub1dd | Structured version Visualization version GIF version |
Description: Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
leadd1dd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
lesub1dd | ⊢ (𝜑 → (𝐴 − 𝐶) ≤ (𝐵 − 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leadd1dd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | 2, 3, 4 | lesub1d 10797 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 − 𝐶) ≤ (𝐵 − 𝐶))) |
6 | 1, 5 | mpbid 222 | 1 ⊢ (𝜑 → (𝐴 − 𝐶) ≤ (𝐵 − 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2127 class class class wbr 4792 (class class class)co 6801 ℝcr 10098 ≤ cle 10238 − cmin 10429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-po 5175 df-so 5176 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 |
This theorem is referenced by: eluzmn 11857 elfzmlbm 12614 modmulnn 12853 icodiamlt 14344 rlimrege0 14480 climsqz2 14542 rlimsqz2 14551 isercolllem1 14565 caucvgrlem 14573 climcndslem1 14751 bitsinv1lem 15336 hashdvds 15653 4sqlem6 15820 dvfsumlem2 23960 dvfsumlem4 23962 dvfsum2 23967 isosctrlem1 24718 lgamgulmlem2 24926 basellem9 24985 ppiub 25099 chtub 25107 logfaclbnd 25117 bposlem1 25179 bposlem6 25184 selberg2lem 25409 pntpbnd2 25446 pntlemo 25466 ttgcontlem1 25935 axpaschlem 25990 axcontlem8 26021 dnibndlem10 32754 unbdqndv2lem2 32778 poimirlem6 33697 poimirlem7 33698 itg2addnclem3 33745 iccbnd 33921 jm2.24nn 37997 fzmaxdif 38019 areaquad 38273 monoords 39979 iccshift 40216 climinf 40310 sumnnodd 40334 dvnmul 40630 itgiccshift 40668 itgperiod 40669 itgsbtaddcnst 40670 stoweidlem13 40702 stoweidlem26 40715 stoweidlem34 40723 fourierdlem19 40815 fourierdlem42 40838 fourierdlem74 40869 fourierdlem75 40870 fourierdlem79 40874 fourierdlem81 40876 fourierdlem82 40877 fourierdlem103 40898 fourierdlem104 40899 fouriersw 40920 hoidmvlelem1 41284 bgoldbtbndlem2 42173 |
Copyright terms: Public domain | W3C validator |