MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lesub1dd Structured version   Visualization version   GIF version

Theorem lesub1dd 10587
Description: Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
ltadd1d.3 (𝜑𝐶 ∈ ℝ)
leadd1dd.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
lesub1dd (𝜑 → (𝐴𝐶) ≤ (𝐵𝐶))

Proof of Theorem lesub1dd
StepHypRef Expression
1 leadd1dd.4 . 2 (𝜑𝐴𝐵)
2 leidd.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ltnegd.2 . . 3 (𝜑𝐵 ∈ ℝ)
4 ltadd1d.3 . . 3 (𝜑𝐶 ∈ ℝ)
52, 3, 4lesub1d 10578 . 2 (𝜑 → (𝐴𝐵 ↔ (𝐴𝐶) ≤ (𝐵𝐶)))
61, 5mpbid 222 1 (𝜑 → (𝐴𝐶) ≤ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1987   class class class wbr 4613  (class class class)co 6604  cr 9879  cle 10019  cmin 10210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213
This theorem is referenced by:  eluzmn  11638  elfzmlbm  12390  modmulnn  12628  icodiamlt  14108  rlimrege0  14244  climsqz2  14306  rlimsqz2  14315  isercolllem1  14329  caucvgrlem  14337  climcndslem1  14506  bitsinv1lem  15087  hashdvds  15404  4sqlem6  15571  dvfsumlem2  23694  dvfsumlem4  23696  dvfsum2  23701  isosctrlem1  24448  lgamgulmlem2  24656  basellem9  24715  ppiub  24829  chtub  24837  logfaclbnd  24847  bposlem1  24909  bposlem6  24914  selberg2lem  25139  pntpbnd2  25176  pntlemo  25196  ttgcontlem1  25665  axpaschlem  25720  axcontlem8  25751  dnibndlem10  32116  unbdqndv2lem2  32140  poimirlem6  33044  poimirlem7  33045  itg2addnclem3  33092  iccbnd  33268  jm2.24nn  37003  fzmaxdif  37025  areaquad  37280  monoords  38972  iccshift  39152  climinf  39239  sumnnodd  39263  dvnmul  39461  itgiccshift  39500  itgperiod  39501  itgsbtaddcnst  39502  stoweidlem13  39534  stoweidlem26  39547  stoweidlem34  39555  fourierdlem19  39647  fourierdlem42  39670  fourierdlem74  39701  fourierdlem75  39702  fourierdlem79  39706  fourierdlem81  39708  fourierdlem82  39709  fourierdlem103  39730  fourierdlem104  39731  fouriersw  39752  hoidmvlelem1  40113  bgoldbtbndlem2  40980
  Copyright terms: Public domain W3C validator