MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lesub3d Structured version   Visualization version   GIF version

Theorem lesub3d 11246
Description: The result of subtracting a number less than or equal to an intermediate number from a number greater than or equal to a third number increased by the intermediate number is greater than or equal to the third number. (Contributed by AV, 13-Aug-2020.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
ltadd1d.3 (𝜑𝐶 ∈ ℝ)
lesub3d.x (𝜑𝑋 ∈ ℝ)
lesub3d.g (𝜑 → (𝑋 + 𝐶) ≤ 𝐴)
lesub3d.l (𝜑𝐵𝑋)
Assertion
Ref Expression
lesub3d (𝜑𝐶 ≤ (𝐴𝐵))

Proof of Theorem lesub3d
StepHypRef Expression
1 ltadd1d.3 . . . 4 (𝜑𝐶 ∈ ℝ)
2 ltnegd.2 . . . 4 (𝜑𝐵 ∈ ℝ)
31, 2readdcld 10658 . . 3 (𝜑 → (𝐶 + 𝐵) ∈ ℝ)
4 lesub3d.x . . . 4 (𝜑𝑋 ∈ ℝ)
54, 1readdcld 10658 . . 3 (𝜑 → (𝑋 + 𝐶) ∈ ℝ)
6 leidd.1 . . 3 (𝜑𝐴 ∈ ℝ)
71recnd 10657 . . . . 5 (𝜑𝐶 ∈ ℂ)
82recnd 10657 . . . . 5 (𝜑𝐵 ∈ ℂ)
97, 8addcomd 10830 . . . 4 (𝜑 → (𝐶 + 𝐵) = (𝐵 + 𝐶))
10 lesub3d.l . . . . 5 (𝜑𝐵𝑋)
112, 4, 1, 10leadd1dd 11242 . . . 4 (𝜑 → (𝐵 + 𝐶) ≤ (𝑋 + 𝐶))
129, 11eqbrtrd 5079 . . 3 (𝜑 → (𝐶 + 𝐵) ≤ (𝑋 + 𝐶))
13 lesub3d.g . . 3 (𝜑 → (𝑋 + 𝐶) ≤ 𝐴)
143, 5, 6, 12, 13letrd 10785 . 2 (𝜑 → (𝐶 + 𝐵) ≤ 𝐴)
15 leaddsub 11104 . . 3 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶 + 𝐵) ≤ 𝐴𝐶 ≤ (𝐴𝐵)))
161, 2, 6, 15syl3anc 1363 . 2 (𝜑 → ((𝐶 + 𝐵) ≤ 𝐴𝐶 ≤ (𝐴𝐵)))
1714, 16mpbid 233 1 (𝜑𝐶 ≤ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wcel 2105   class class class wbr 5057  (class class class)co 7145  cr 10524   + caddc 10528  cle 10664  cmin 10858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861
This theorem is referenced by:  prmgaplem8  16382  bcmono  25780  fltnlta  39153
  Copyright terms: Public domain W3C validator