MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  letsr Structured version   Visualization version   GIF version

Theorem letsr 17159
Description: The "less than or equal to" relationship on the extended reals is a toset. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
letsr ≤ ∈ TosetRel

Proof of Theorem letsr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lerel 10054 . . 3 Rel ≤
2 lerelxr 10053 . . . . . . . . . . 11 ≤ ⊆ (ℝ* × ℝ*)
32brel 5133 . . . . . . . . . 10 (𝑥𝑦 → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
43adantr 481 . . . . . . . . 9 ((𝑥𝑦𝑦𝑧) → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
54simpld 475 . . . . . . . 8 ((𝑥𝑦𝑦𝑧) → 𝑥 ∈ ℝ*)
64simprd 479 . . . . . . . 8 ((𝑥𝑦𝑦𝑧) → 𝑦 ∈ ℝ*)
72brel 5133 . . . . . . . . . 10 (𝑦𝑧 → (𝑦 ∈ ℝ*𝑧 ∈ ℝ*))
87simprd 479 . . . . . . . . 9 (𝑦𝑧𝑧 ∈ ℝ*)
98adantl 482 . . . . . . . 8 ((𝑥𝑦𝑦𝑧) → 𝑧 ∈ ℝ*)
105, 6, 93jca 1240 . . . . . . 7 ((𝑥𝑦𝑦𝑧) → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*))
11 xrletr 11941 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
1210, 11mpcom 38 . . . . . 6 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
1312ax-gen 1719 . . . . 5 𝑧((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
1413gen2 1720 . . . 4 𝑥𝑦𝑧((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
15 cotr 5472 . . . 4 (( ≤ ∘ ≤ ) ⊆ ≤ ↔ ∀𝑥𝑦𝑧((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
1614, 15mpbir 221 . . 3 ( ≤ ∘ ≤ ) ⊆ ≤
17 asymref 5476 . . . 4 (( ≤ ∩ ≤ ) = ( I ↾ ≤ ) ↔ ∀𝑥 ≤ ∀𝑦((𝑥𝑦𝑦𝑥) ↔ 𝑥 = 𝑦))
18 simpr 477 . . . . . . . . 9 ((𝑥 ∈ ℝ* ∧ (𝑥𝑦𝑦𝑥)) → (𝑥𝑦𝑦𝑥))
192brel 5133 . . . . . . . . . . . 12 (𝑦𝑥 → (𝑦 ∈ ℝ*𝑥 ∈ ℝ*))
2019simpld 475 . . . . . . . . . . 11 (𝑦𝑥𝑦 ∈ ℝ*)
2120adantl 482 . . . . . . . . . 10 ((𝑥𝑦𝑦𝑥) → 𝑦 ∈ ℝ*)
22 xrletri3 11937 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 = 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
2321, 22sylan2 491 . . . . . . . . 9 ((𝑥 ∈ ℝ* ∧ (𝑥𝑦𝑦𝑥)) → (𝑥 = 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
2418, 23mpbird 247 . . . . . . . 8 ((𝑥 ∈ ℝ* ∧ (𝑥𝑦𝑦𝑥)) → 𝑥 = 𝑦)
2524ex 450 . . . . . . 7 (𝑥 ∈ ℝ* → ((𝑥𝑦𝑦𝑥) → 𝑥 = 𝑦))
26 xrleid 11935 . . . . . . . . 9 (𝑥 ∈ ℝ*𝑥𝑥)
2726, 26jca 554 . . . . . . . 8 (𝑥 ∈ ℝ* → (𝑥𝑥𝑥𝑥))
28 breq2 4622 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝑥𝑥𝑦))
29 breq1 4621 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑥))
3028, 29anbi12d 746 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝑥𝑥𝑥) ↔ (𝑥𝑦𝑦𝑥)))
3127, 30syl5ibcom 235 . . . . . . 7 (𝑥 ∈ ℝ* → (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑥)))
3225, 31impbid 202 . . . . . 6 (𝑥 ∈ ℝ* → ((𝑥𝑦𝑦𝑥) ↔ 𝑥 = 𝑦))
3332alrimiv 1852 . . . . 5 (𝑥 ∈ ℝ* → ∀𝑦((𝑥𝑦𝑦𝑥) ↔ 𝑥 = 𝑦))
34 lefld 17158 . . . . . 6 * =
3534eqcomi 2630 . . . . 5 ≤ = ℝ*
3633, 35eleq2s 2716 . . . 4 (𝑥 ≤ → ∀𝑦((𝑥𝑦𝑦𝑥) ↔ 𝑥 = 𝑦))
3717, 36mprgbir 2922 . . 3 ( ≤ ∩ ≤ ) = ( I ↾ ≤ )
38 xrex 11781 . . . . . 6 * ∈ V
3938, 38xpex 6922 . . . . 5 (ℝ* × ℝ*) ∈ V
4039, 2ssexi 4768 . . . 4 ≤ ∈ V
41 isps 17134 . . . 4 ( ≤ ∈ V → ( ≤ ∈ PosetRel ↔ (Rel ≤ ∧ ( ≤ ∘ ≤ ) ⊆ ≤ ∧ ( ≤ ∩ ≤ ) = ( I ↾ ≤ ))))
4240, 41ax-mp 5 . . 3 ( ≤ ∈ PosetRel ↔ (Rel ≤ ∧ ( ≤ ∘ ≤ ) ⊆ ≤ ∧ ( ≤ ∩ ≤ ) = ( I ↾ ≤ )))
431, 16, 37, 42mpbir3an 1242 . 2 ≤ ∈ PosetRel
44 xrletri 11936 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦𝑦𝑥))
4544rgen2a 2972 . . 3 𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥𝑦𝑦𝑥)
46 qfto 5481 . . 3 ((ℝ* × ℝ*) ⊆ ( ≤ ∪ ≤ ) ↔ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥𝑦𝑦𝑥))
4745, 46mpbir 221 . 2 (ℝ* × ℝ*) ⊆ ( ≤ ∪ ≤ )
48 ledm 17156 . . 3 * = dom ≤
4948istsr 17149 . 2 ( ≤ ∈ TosetRel ↔ ( ≤ ∈ PosetRel ∧ (ℝ* × ℝ*) ⊆ ( ≤ ∪ ≤ )))
5043, 47, 49mpbir2an 954 1 ≤ ∈ TosetRel
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036  wal 1478   = wceq 1480  wcel 1987  wral 2907  Vcvv 3189  cun 3557  cin 3558  wss 3559   cuni 4407   class class class wbr 4618   I cid 4989   × cxp 5077  ccnv 5078  cres 5081  ccom 5083  Rel wrel 5084  *cxr 10025  cle 10027  PosetRelcps 17130   TosetRel ctsr 17131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-pre-lttri 9962  ax-pre-lttrn 9963
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-ps 17132  df-tsr 17133
This theorem is referenced by:  cnfldle  19687  cnfldfun  19690  cnfldfunALT  19691  letopon  20932  leordtval2  20939  leordtval  20940  iccordt  20941  ordtrestixx  20949  xrge0tsms  22560  icopnfhmeo  22665  iccpnfhmeo  22667  xrhmeo  22668  xrhaus  29402  xrge0tsmsd  29594  cnvordtrestixx  29765  xrmulc1cn  29782  xrge0iifhmeo  29788  poimir  33109
  Copyright terms: Public domain W3C validator