MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfinun Structured version   Visualization version   GIF version

Theorem lfinun 22127
Description: Adding a finite set preserves locally finite covers. (Contributed by Thierry Arnoux, 31-Jan-2020.)
Assertion
Ref Expression
lfinun ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin ∧ 𝐵 𝐽) → (𝐴𝐵) ∈ (LocFin‘𝐽))

Proof of Theorem lfinun
Dummy variables 𝑛 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 locfintop 22123 . . . . 5 (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top)
21ad2antrr 724 . . . 4 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → 𝐽 ∈ Top)
3 ssequn2 4158 . . . . . . . 8 ( 𝐵 𝐽 ↔ ( 𝐽 𝐵) = 𝐽)
43biimpi 218 . . . . . . 7 ( 𝐵 𝐽 → ( 𝐽 𝐵) = 𝐽)
54adantl 484 . . . . . 6 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → ( 𝐽 𝐵) = 𝐽)
6 eqid 2821 . . . . . . . . 9 𝐽 = 𝐽
7 eqid 2821 . . . . . . . . 9 𝐴 = 𝐴
86, 7locfinbas 22124 . . . . . . . 8 (𝐴 ∈ (LocFin‘𝐽) → 𝐽 = 𝐴)
98ad2antrr 724 . . . . . . 7 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → 𝐽 = 𝐴)
109uneq1d 4137 . . . . . 6 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → ( 𝐽 𝐵) = ( 𝐴 𝐵))
115, 10eqtr3d 2858 . . . . 5 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → 𝐽 = ( 𝐴 𝐵))
12 uniun 4850 . . . . 5 (𝐴𝐵) = ( 𝐴 𝐵)
1311, 12syl6eqr 2874 . . . 4 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → 𝐽 = (𝐴𝐵))
146locfinnei 22125 . . . . . . 7 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐽) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
1514ad4ant14 750 . . . . . 6 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
16 simpr 487 . . . . . . . . . . 11 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
17 rabfi 8737 . . . . . . . . . . . 12 (𝐵 ∈ Fin → {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
1817ad2antlr 725 . . . . . . . . . . 11 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
19 rabun2 4281 . . . . . . . . . . . 12 {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} = ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∪ {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅})
20 unfi 8779 . . . . . . . . . . . 12 (({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin ∧ {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∪ {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅}) ∈ Fin)
2119, 20eqeltrid 2917 . . . . . . . . . . 11 (({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin ∧ {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
2216, 18, 21syl2anc 586 . . . . . . . . . 10 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
2322ex 415 . . . . . . . . 9 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin → {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
2423ad2antrr 724 . . . . . . . 8 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin → {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
2524anim2d 613 . . . . . . 7 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → ((𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
2625reximdv 3273 . . . . . 6 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → (∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
2715, 26mpd 15 . . . . 5 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
2827ralrimiva 3182 . . . 4 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → ∀𝑥 𝐽𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
292, 13, 283jca 1124 . . 3 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → (𝐽 ∈ Top ∧ 𝐽 = (𝐴𝐵) ∧ ∀𝑥 𝐽𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
30293impa 1106 . 2 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin ∧ 𝐵 𝐽) → (𝐽 ∈ Top ∧ 𝐽 = (𝐴𝐵) ∧ ∀𝑥 𝐽𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
31 eqid 2821 . . 3 (𝐴𝐵) = (𝐴𝐵)
326, 31islocfin 22119 . 2 ((𝐴𝐵) ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝐽 = (𝐴𝐵) ∧ ∀𝑥 𝐽𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
3330, 32sylibr 236 1 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin ∧ 𝐵 𝐽) → (𝐴𝐵) ∈ (LocFin‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  cun 3933  cin 3934  wss 3935  c0 4290   cuni 4831  cfv 6349  Fincfn 8503  Topctop 21495  LocFinclocfin 22106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-oadd 8100  df-er 8283  df-en 8504  df-fin 8507  df-top 21496  df-locfin 22109
This theorem is referenced by:  locfinref  31100
  Copyright terms: Public domain W3C validator