Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl0f Structured version   Visualization version   GIF version

Theorem lfl0f 33833
Description: The zero function is a functional. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lfl0f.d 𝐷 = (Scalar‘𝑊)
lfl0f.o 0 = (0g𝐷)
lfl0f.v 𝑉 = (Base‘𝑊)
lfl0f.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lfl0f (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ 𝐹)

Proof of Theorem lfl0f
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lfl0f.o . . . . 5 0 = (0g𝐷)
2 fvex 6158 . . . . 5 (0g𝐷) ∈ V
31, 2eqeltri 2694 . . . 4 0 ∈ V
43fconst 6048 . . 3 (𝑉 × { 0 }):𝑉⟶{ 0 }
5 lfl0f.d . . . . 5 𝐷 = (Scalar‘𝑊)
6 eqid 2621 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
75, 6, 1lmod0cl 18810 . . . 4 (𝑊 ∈ LMod → 0 ∈ (Base‘𝐷))
87snssd 4309 . . 3 (𝑊 ∈ LMod → { 0 } ⊆ (Base‘𝐷))
9 fss 6013 . . 3 (((𝑉 × { 0 }):𝑉⟶{ 0 } ∧ { 0 } ⊆ (Base‘𝐷)) → (𝑉 × { 0 }):𝑉⟶(Base‘𝐷))
104, 8, 9sylancr 694 . 2 (𝑊 ∈ LMod → (𝑉 × { 0 }):𝑉⟶(Base‘𝐷))
115lmodring 18792 . . . . . . . . 9 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
1211ad2antrr 761 . . . . . . . 8 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝐷 ∈ Ring)
13 simplrl 799 . . . . . . . 8 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝑟 ∈ (Base‘𝐷))
14 eqid 2621 . . . . . . . . 9 (.r𝐷) = (.r𝐷)
156, 14, 1ringrz 18509 . . . . . . . 8 ((𝐷 ∈ Ring ∧ 𝑟 ∈ (Base‘𝐷)) → (𝑟(.r𝐷) 0 ) = 0 )
1612, 13, 15syl2anc 692 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → (𝑟(.r𝐷) 0 ) = 0 )
1716oveq1d 6619 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑟(.r𝐷) 0 )(+g𝐷) 0 ) = ( 0 (+g𝐷) 0 ))
18 ringgrp 18473 . . . . . . . 8 (𝐷 ∈ Ring → 𝐷 ∈ Grp)
1912, 18syl 17 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝐷 ∈ Grp)
206, 1grpidcl 17371 . . . . . . . 8 (𝐷 ∈ Grp → 0 ∈ (Base‘𝐷))
2119, 20syl 17 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 0 ∈ (Base‘𝐷))
22 eqid 2621 . . . . . . . 8 (+g𝐷) = (+g𝐷)
236, 22, 1grplid 17373 . . . . . . 7 ((𝐷 ∈ Grp ∧ 0 ∈ (Base‘𝐷)) → ( 0 (+g𝐷) 0 ) = 0 )
2419, 21, 23syl2anc 692 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ( 0 (+g𝐷) 0 ) = 0 )
2517, 24eqtrd 2655 . . . . 5 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑟(.r𝐷) 0 )(+g𝐷) 0 ) = 0 )
26 simplrr 800 . . . . . . . 8 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝑥𝑉)
273fvconst2 6423 . . . . . . . 8 (𝑥𝑉 → ((𝑉 × { 0 })‘𝑥) = 0 )
2826, 27syl 17 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑉 × { 0 })‘𝑥) = 0 )
2928oveq2d 6620 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → (𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥)) = (𝑟(.r𝐷) 0 ))
303fvconst2 6423 . . . . . . 7 (𝑦𝑉 → ((𝑉 × { 0 })‘𝑦) = 0 )
3130adantl 482 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑉 × { 0 })‘𝑦) = 0 )
3229, 31oveq12d 6622 . . . . 5 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)) = ((𝑟(.r𝐷) 0 )(+g𝐷) 0 ))
33 simpll 789 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝑊 ∈ LMod)
34 lfl0f.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
35 eqid 2621 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
3634, 5, 35, 6lmodvscl 18801 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉) → (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉)
3733, 13, 26, 36syl3anc 1323 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉)
38 simpr 477 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝑦𝑉)
39 eqid 2621 . . . . . . . 8 (+g𝑊) = (+g𝑊)
4034, 39lmodvacl 18798 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉𝑦𝑉) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉)
4133, 37, 38, 40syl3anc 1323 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉)
423fvconst2 6423 . . . . . 6 (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉 → ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = 0 )
4341, 42syl 17 . . . . 5 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = 0 )
4425, 32, 433eqtr4rd 2666 . . . 4 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)))
4544ralrimiva 2960 . . 3 ((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) → ∀𝑦𝑉 ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)))
4645ralrimivva 2965 . 2 (𝑊 ∈ LMod → ∀𝑟 ∈ (Base‘𝐷)∀𝑥𝑉𝑦𝑉 ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)))
47 lfl0f.f . . 3 𝐹 = (LFnl‘𝑊)
4834, 39, 5, 35, 6, 22, 14, 47islfl 33824 . 2 (𝑊 ∈ LMod → ((𝑉 × { 0 }) ∈ 𝐹 ↔ ((𝑉 × { 0 }):𝑉⟶(Base‘𝐷) ∧ ∀𝑟 ∈ (Base‘𝐷)∀𝑥𝑉𝑦𝑉 ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)))))
4910, 46, 48mpbir2and 956 1 (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186  wss 3555  {csn 4148   × cxp 5072  wf 5843  cfv 5847  (class class class)co 6604  Basecbs 15781  +gcplusg 15862  .rcmulr 15863  Scalarcsca 15865   ·𝑠 cvsca 15866  0gc0g 16021  Grpcgrp 17343  Ringcrg 18468  LModclmod 18784  LFnlclfn 33821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-plusg 15875  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-mgp 18411  df-ring 18470  df-lmod 18786  df-lfl 33822
This theorem is referenced by:  lkr0f  33858  lkrscss  33862  ldualgrplem  33909  ldual0v  33914  ldual0vcl  33915  lclkrlem1  36272  lclkr  36299  lclkrs  36305
  Copyright terms: Public domain W3C validator