Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl1 Structured version   Visualization version   GIF version

Theorem lfl1 34858
Description: A nonzero functional has a value of 1 at some argument. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lfl1.d 𝐷 = (Scalar‘𝑊)
lfl1.o 0 = (0g𝐷)
lfl1.u 1 = (1r𝐷)
lfl1.v 𝑉 = (Base‘𝑊)
lfl1.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lfl1 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ∃𝑥𝑉 (𝐺𝑥) = 1 )
Distinct variable groups:   𝑥,𝐷   𝑥,𝐺   𝑥, 1   𝑥,𝑉   𝑥,𝑊
Allowed substitution hints:   𝐹(𝑥)   0 (𝑥)

Proof of Theorem lfl1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nne 2934 . . . . . . 7 (¬ (𝐺𝑧) ≠ 0 ↔ (𝐺𝑧) = 0 )
21ralbii 3116 . . . . . 6 (∀𝑧𝑉 ¬ (𝐺𝑧) ≠ 0 ↔ ∀𝑧𝑉 (𝐺𝑧) = 0 )
3 lfl1.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
4 eqid 2758 . . . . . . . . . 10 (Base‘𝐷) = (Base‘𝐷)
5 lfl1.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
6 lfl1.f . . . . . . . . . 10 𝐹 = (LFnl‘𝑊)
73, 4, 5, 6lflf 34851 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → 𝐺:𝑉⟶(Base‘𝐷))
8 ffn 6204 . . . . . . . . 9 (𝐺:𝑉⟶(Base‘𝐷) → 𝐺 Fn 𝑉)
97, 8syl 17 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → 𝐺 Fn 𝑉)
10 fconstfv 6638 . . . . . . . . 9 (𝐺:𝑉⟶{ 0 } ↔ (𝐺 Fn 𝑉 ∧ ∀𝑧𝑉 (𝐺𝑧) = 0 ))
1110simplbi2 656 . . . . . . . 8 (𝐺 Fn 𝑉 → (∀𝑧𝑉 (𝐺𝑧) = 0𝐺:𝑉⟶{ 0 }))
129, 11syl 17 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (∀𝑧𝑉 (𝐺𝑧) = 0𝐺:𝑉⟶{ 0 }))
13 lfl1.o . . . . . . . . 9 0 = (0g𝐷)
14 fvex 6360 . . . . . . . . 9 (0g𝐷) ∈ V
1513, 14eqeltri 2833 . . . . . . . 8 0 ∈ V
1615fconst2 6632 . . . . . . 7 (𝐺:𝑉⟶{ 0 } ↔ 𝐺 = (𝑉 × { 0 }))
1712, 16syl6ib 241 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (∀𝑧𝑉 (𝐺𝑧) = 0𝐺 = (𝑉 × { 0 })))
182, 17syl5bi 232 . . . . 5 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (∀𝑧𝑉 ¬ (𝐺𝑧) ≠ 0𝐺 = (𝑉 × { 0 })))
1918necon3ad 2943 . . . 4 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (𝐺 ≠ (𝑉 × { 0 }) → ¬ ∀𝑧𝑉 ¬ (𝐺𝑧) ≠ 0 ))
20 dfrex2 3132 . . . 4 (∃𝑧𝑉 (𝐺𝑧) ≠ 0 ↔ ¬ ∀𝑧𝑉 ¬ (𝐺𝑧) ≠ 0 )
2119, 20syl6ibr 242 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (𝐺 ≠ (𝑉 × { 0 }) → ∃𝑧𝑉 (𝐺𝑧) ≠ 0 ))
22213impia 1110 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ∃𝑧𝑉 (𝐺𝑧) ≠ 0 )
23 simp1l 1240 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → 𝑊 ∈ LVec)
24 lveclmod 19306 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2523, 24syl 17 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → 𝑊 ∈ LMod)
263lvecdrng 19305 . . . . . . . 8 (𝑊 ∈ LVec → 𝐷 ∈ DivRing)
2723, 26syl 17 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → 𝐷 ∈ DivRing)
28 simp1r 1241 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → 𝐺𝐹)
29 simp2 1132 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → 𝑧𝑉)
303, 4, 5, 6lflcl 34852 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑧𝑉) → (𝐺𝑧) ∈ (Base‘𝐷))
3123, 28, 29, 30syl3anc 1477 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (𝐺𝑧) ∈ (Base‘𝐷))
32 simp3 1133 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (𝐺𝑧) ≠ 0 )
33 eqid 2758 . . . . . . . 8 (invr𝐷) = (invr𝐷)
344, 13, 33drnginvrcl 18964 . . . . . . 7 ((𝐷 ∈ DivRing ∧ (𝐺𝑧) ∈ (Base‘𝐷) ∧ (𝐺𝑧) ≠ 0 ) → ((invr𝐷)‘(𝐺𝑧)) ∈ (Base‘𝐷))
3527, 31, 32, 34syl3anc 1477 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → ((invr𝐷)‘(𝐺𝑧)) ∈ (Base‘𝐷))
36 eqid 2758 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
375, 3, 36, 4lmodvscl 19080 . . . . . 6 ((𝑊 ∈ LMod ∧ ((invr𝐷)‘(𝐺𝑧)) ∈ (Base‘𝐷) ∧ 𝑧𝑉) → (((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧) ∈ 𝑉)
3825, 35, 29, 37syl3anc 1477 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧) ∈ 𝑉)
39 eqid 2758 . . . . . . . 8 (.r𝐷) = (.r𝐷)
403, 4, 39, 5, 36, 6lflmul 34856 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (((invr𝐷)‘(𝐺𝑧)) ∈ (Base‘𝐷) ∧ 𝑧𝑉)) → (𝐺‘(((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧)) = (((invr𝐷)‘(𝐺𝑧))(.r𝐷)(𝐺𝑧)))
4125, 28, 35, 29, 40syl112anc 1481 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (𝐺‘(((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧)) = (((invr𝐷)‘(𝐺𝑧))(.r𝐷)(𝐺𝑧)))
42 lfl1.u . . . . . . . 8 1 = (1r𝐷)
434, 13, 39, 42, 33drnginvrl 18966 . . . . . . 7 ((𝐷 ∈ DivRing ∧ (𝐺𝑧) ∈ (Base‘𝐷) ∧ (𝐺𝑧) ≠ 0 ) → (((invr𝐷)‘(𝐺𝑧))(.r𝐷)(𝐺𝑧)) = 1 )
4427, 31, 32, 43syl3anc 1477 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (((invr𝐷)‘(𝐺𝑧))(.r𝐷)(𝐺𝑧)) = 1 )
4541, 44eqtrd 2792 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (𝐺‘(((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧)) = 1 )
46 fveq2 6350 . . . . . . 7 (𝑥 = (((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧) → (𝐺𝑥) = (𝐺‘(((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧)))
4746eqeq1d 2760 . . . . . 6 (𝑥 = (((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧) → ((𝐺𝑥) = 1 ↔ (𝐺‘(((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧)) = 1 ))
4847rspcev 3447 . . . . 5 (((((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧) ∈ 𝑉 ∧ (𝐺‘(((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧)) = 1 ) → ∃𝑥𝑉 (𝐺𝑥) = 1 )
4938, 45, 48syl2anc 696 . . . 4 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → ∃𝑥𝑉 (𝐺𝑥) = 1 )
5049rexlimdv3a 3169 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (∃𝑧𝑉 (𝐺𝑧) ≠ 0 → ∃𝑥𝑉 (𝐺𝑥) = 1 ))
51503adant3 1127 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (∃𝑧𝑉 (𝐺𝑧) ≠ 0 → ∃𝑥𝑉 (𝐺𝑥) = 1 ))
5222, 51mpd 15 1 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ∃𝑥𝑉 (𝐺𝑥) = 1 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072   = wceq 1630  wcel 2137  wne 2930  wral 3048  wrex 3049  Vcvv 3338  {csn 4319   × cxp 5262   Fn wfn 6042  wf 6043  cfv 6047  (class class class)co 6811  Basecbs 16057  .rcmulr 16142  Scalarcsca 16144   ·𝑠 cvsca 16145  0gc0g 16300  1rcur 18699  invrcinvr 18869  DivRingcdr 18947  LModclmod 19063  LVecclvec 19302  LFnlclfn 34845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-tpos 7519  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-er 7909  df-map 8023  df-en 8120  df-dom 8121  df-sdom 8122  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-nn 11211  df-2 11269  df-3 11270  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16154  df-mulr 16155  df-0g 16302  df-mgm 17441  df-sgrp 17483  df-mnd 17494  df-grp 17624  df-minusg 17625  df-sbg 17626  df-mgp 18688  df-ur 18700  df-ring 18747  df-oppr 18821  df-dvdsr 18839  df-unit 18840  df-invr 18870  df-drng 18949  df-lmod 19065  df-lvec 19303  df-lfl 34846
This theorem is referenced by:  eqlkr  34887  lkrshp  34893
  Copyright terms: Public domain W3C validator