Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl1dim Structured version   Visualization version   GIF version

Theorem lfl1dim 34911
 Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.)
Hypotheses
Ref Expression
lfl1dim.v 𝑉 = (Base‘𝑊)
lfl1dim.d 𝐷 = (Scalar‘𝑊)
lfl1dim.f 𝐹 = (LFnl‘𝑊)
lfl1dim.l 𝐿 = (LKer‘𝑊)
lfl1dim.k 𝐾 = (Base‘𝐷)
lfl1dim.t · = (.r𝐷)
lfl1dim.w (𝜑𝑊 ∈ LVec)
lfl1dim.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lfl1dim (𝜑 → {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔 ∣ ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))})
Distinct variable groups:   𝐷,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝐿   𝑘,𝑉   𝑘,𝑊   𝑔,𝑘,𝜑   · ,𝑘
Allowed substitution hints:   𝐷(𝑔)   · (𝑔)   𝐹(𝑔)   𝐺(𝑔)   𝐾(𝑔)   𝐿(𝑔)   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem lfl1dim
StepHypRef Expression
1 df-rab 3059 . 2 {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔 ∣ (𝑔𝐹 ∧ (𝐿𝐺) ⊆ (𝐿𝑔))}
2 lfl1dim.w . . . . . . . . . . . 12 (𝜑𝑊 ∈ LVec)
3 lveclmod 19308 . . . . . . . . . . . 12 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
42, 3syl 17 . . . . . . . . . . 11 (𝜑𝑊 ∈ LMod)
5 lfl1dim.d . . . . . . . . . . . 12 𝐷 = (Scalar‘𝑊)
6 lfl1dim.k . . . . . . . . . . . 12 𝐾 = (Base‘𝐷)
7 eqid 2760 . . . . . . . . . . . 12 (0g𝐷) = (0g𝐷)
85, 6, 7lmod0cl 19091 . . . . . . . . . . 11 (𝑊 ∈ LMod → (0g𝐷) ∈ 𝐾)
94, 8syl 17 . . . . . . . . . 10 (𝜑 → (0g𝐷) ∈ 𝐾)
109ad2antrr 764 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → (0g𝐷) ∈ 𝐾)
11 simpr 479 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑔 = (𝑉 × {(0g𝐷)}))
12 lfl1dim.v . . . . . . . . . . 11 𝑉 = (Base‘𝑊)
13 lfl1dim.f . . . . . . . . . . 11 𝐹 = (LFnl‘𝑊)
14 lfl1dim.t . . . . . . . . . . 11 · = (.r𝐷)
154ad2antrr 764 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑊 ∈ LMod)
16 lfl1dim.g . . . . . . . . . . . 12 (𝜑𝐺𝐹)
1716ad2antrr 764 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝐺𝐹)
1812, 5, 13, 6, 14, 7, 15, 17lfl0sc 34872 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → (𝐺𝑓 · (𝑉 × {(0g𝐷)})) = (𝑉 × {(0g𝐷)}))
1911, 18eqtr4d 2797 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑔 = (𝐺𝑓 · (𝑉 × {(0g𝐷)})))
20 sneq 4331 . . . . . . . . . . . . 13 (𝑘 = (0g𝐷) → {𝑘} = {(0g𝐷)})
2120xpeq2d 5296 . . . . . . . . . . . 12 (𝑘 = (0g𝐷) → (𝑉 × {𝑘}) = (𝑉 × {(0g𝐷)}))
2221oveq2d 6829 . . . . . . . . . . 11 (𝑘 = (0g𝐷) → (𝐺𝑓 · (𝑉 × {𝑘})) = (𝐺𝑓 · (𝑉 × {(0g𝐷)})))
2322eqeq2d 2770 . . . . . . . . . 10 (𝑘 = (0g𝐷) → (𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) ↔ 𝑔 = (𝐺𝑓 · (𝑉 × {(0g𝐷)}))))
2423rspcev 3449 . . . . . . . . 9 (((0g𝐷) ∈ 𝐾𝑔 = (𝐺𝑓 · (𝑉 × {(0g𝐷)}))) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})))
2510, 19, 24syl2anc 696 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})))
2625a1d 25 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
279ad3antrrr 768 . . . . . . . . 9 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (0g𝐷) ∈ 𝐾)
28 lfl1dim.l . . . . . . . . . . . . 13 𝐿 = (LKer‘𝑊)
294ad3antrrr 768 . . . . . . . . . . . . 13 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑊 ∈ LMod)
30 simpllr 817 . . . . . . . . . . . . 13 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔𝐹)
3112, 13, 28, 29, 30lkrssv 34886 . . . . . . . . . . . 12 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐿𝑔) ⊆ 𝑉)
324adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑔𝐹) → 𝑊 ∈ LMod)
3316adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑔𝐹) → 𝐺𝐹)
345, 7, 12, 13, 28lkr0f 34884 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
3532, 33, 34syl2anc 696 . . . . . . . . . . . . . . 15 ((𝜑𝑔𝐹) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
3635biimpar 503 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → (𝐿𝐺) = 𝑉)
3736sseq1d 3773 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ 𝑉 ⊆ (𝐿𝑔)))
3837biimpa 502 . . . . . . . . . . . 12 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑉 ⊆ (𝐿𝑔))
3931, 38eqssd 3761 . . . . . . . . . . 11 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐿𝑔) = 𝑉)
405, 7, 12, 13, 28lkr0f 34884 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑔𝐹) → ((𝐿𝑔) = 𝑉𝑔 = (𝑉 × {(0g𝐷)})))
4129, 30, 40syl2anc 696 . . . . . . . . . . 11 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → ((𝐿𝑔) = 𝑉𝑔 = (𝑉 × {(0g𝐷)})))
4239, 41mpbid 222 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔 = (𝑉 × {(0g𝐷)}))
4316ad3antrrr 768 . . . . . . . . . . 11 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝐺𝐹)
4412, 5, 13, 6, 14, 7, 29, 43lfl0sc 34872 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐺𝑓 · (𝑉 × {(0g𝐷)})) = (𝑉 × {(0g𝐷)}))
4542, 44eqtr4d 2797 . . . . . . . . 9 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔 = (𝐺𝑓 · (𝑉 × {(0g𝐷)})))
4627, 45, 24syl2anc 696 . . . . . . . 8 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})))
4746ex 449 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
48 eqid 2760 . . . . . . . . 9 (LSHyp‘𝑊) = (LSHyp‘𝑊)
492ad2antrr 764 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑊 ∈ LVec)
5016ad2antrr 764 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝐺𝐹)
51 simprr 813 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝐺 ≠ (𝑉 × {(0g𝐷)}))
5212, 5, 7, 48, 13, 28lkrshp 34895 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × {(0g𝐷)})) → (𝐿𝐺) ∈ (LSHyp‘𝑊))
5349, 50, 51, 52syl3anc 1477 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → (𝐿𝐺) ∈ (LSHyp‘𝑊))
54 simplr 809 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑔𝐹)
55 simprl 811 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑔 ≠ (𝑉 × {(0g𝐷)}))
5612, 5, 7, 48, 13, 28lkrshp 34895 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝑔𝐹𝑔 ≠ (𝑉 × {(0g𝐷)})) → (𝐿𝑔) ∈ (LSHyp‘𝑊))
5749, 54, 55, 56syl3anc 1477 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → (𝐿𝑔) ∈ (LSHyp‘𝑊))
5848, 49, 53, 57lshpcmp 34778 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ (𝐿𝐺) = (𝐿𝑔)))
592ad3antrrr 768 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝑊 ∈ LVec)
6016ad3antrrr 768 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝐺𝐹)
61 simpllr 817 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝑔𝐹)
62 simpr 479 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → (𝐿𝐺) = (𝐿𝑔))
635, 6, 14, 12, 13, 28eqlkr2 34890 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝑔𝐹) ∧ (𝐿𝐺) = (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})))
6459, 60, 61, 62, 63syl121anc 1482 . . . . . . . . 9 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})))
6564ex 449 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) = (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
6658, 65sylbid 230 . . . . . . 7 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
6726, 47, 66pm2.61da2ne 3020 . . . . . 6 ((𝜑𝑔𝐹) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
682ad2antrr 764 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝑊 ∈ LVec)
6916ad2antrr 764 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝐺𝐹)
70 simpr 479 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝑘𝐾)
7112, 5, 6, 14, 13, 28, 68, 69, 70lkrscss 34888 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → (𝐿𝐺) ⊆ (𝐿‘(𝐺𝑓 · (𝑉 × {𝑘}))))
7271ex 449 . . . . . . . 8 ((𝜑𝑔𝐹) → (𝑘𝐾 → (𝐿𝐺) ⊆ (𝐿‘(𝐺𝑓 · (𝑉 × {𝑘})))))
73 fveq2 6352 . . . . . . . . . 10 (𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) → (𝐿𝑔) = (𝐿‘(𝐺𝑓 · (𝑉 × {𝑘}))))
7473sseq2d 3774 . . . . . . . . 9 (𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ (𝐿𝐺) ⊆ (𝐿‘(𝐺𝑓 · (𝑉 × {𝑘})))))
7574biimprcd 240 . . . . . . . 8 ((𝐿𝐺) ⊆ (𝐿‘(𝐺𝑓 · (𝑉 × {𝑘}))) → (𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔)))
7672, 75syl6 35 . . . . . . 7 ((𝜑𝑔𝐹) → (𝑘𝐾 → (𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔))))
7776rexlimdv 3168 . . . . . 6 ((𝜑𝑔𝐹) → (∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔)))
7867, 77impbid 202 . . . . 5 ((𝜑𝑔𝐹) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
7978pm5.32da 676 . . . 4 (𝜑 → ((𝑔𝐹 ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) ↔ (𝑔𝐹 ∧ ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})))))
804adantr 472 . . . . . . . . 9 ((𝜑𝑘𝐾) → 𝑊 ∈ LMod)
8116adantr 472 . . . . . . . . 9 ((𝜑𝑘𝐾) → 𝐺𝐹)
82 simpr 479 . . . . . . . . 9 ((𝜑𝑘𝐾) → 𝑘𝐾)
8312, 5, 6, 14, 13, 80, 81, 82lflvscl 34867 . . . . . . . 8 ((𝜑𝑘𝐾) → (𝐺𝑓 · (𝑉 × {𝑘})) ∈ 𝐹)
84 eleq1a 2834 . . . . . . . 8 ((𝐺𝑓 · (𝑉 × {𝑘})) ∈ 𝐹 → (𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) → 𝑔𝐹))
8583, 84syl 17 . . . . . . 7 ((𝜑𝑘𝐾) → (𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) → 𝑔𝐹))
8685pm4.71rd 670 . . . . . 6 ((𝜑𝑘𝐾) → (𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) ↔ (𝑔𝐹𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})))))
8786rexbidva 3187 . . . . 5 (𝜑 → (∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) ↔ ∃𝑘𝐾 (𝑔𝐹𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})))))
88 r19.42v 3230 . . . . 5 (∃𝑘𝐾 (𝑔𝐹𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))) ↔ (𝑔𝐹 ∧ ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
8987, 88syl6rbb 277 . . . 4 (𝜑 → ((𝑔𝐹 ∧ ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))) ↔ ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
9079, 89bitrd 268 . . 3 (𝜑 → ((𝑔𝐹 ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) ↔ ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
9190abbidv 2879 . 2 (𝜑 → {𝑔 ∣ (𝑔𝐹 ∧ (𝐿𝐺) ⊆ (𝐿𝑔))} = {𝑔 ∣ ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))})
921, 91syl5eq 2806 1 (𝜑 → {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔 ∣ ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  {cab 2746   ≠ wne 2932  ∃wrex 3051  {crab 3054   ⊆ wss 3715  {csn 4321   × cxp 5264  ‘cfv 6049  (class class class)co 6813   ∘𝑓 cof 7060  Basecbs 16059  .rcmulr 16144  Scalarcsca 16146  0gc0g 16302  LModclmod 19065  LVecclvec 19304  LSHypclsh 34765  LFnlclfn 34847  LKerclk 34875 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-subg 17792  df-cntz 17950  df-lsm 18251  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-drng 18951  df-lmod 19067  df-lss 19135  df-lsp 19174  df-lvec 19305  df-lshyp 34767  df-lfl 34848  df-lkr 34876 This theorem is referenced by:  ldual1dim  34956
 Copyright terms: Public domain W3C validator