Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfladdass Structured version   Visualization version   GIF version

Theorem lfladdass 34186
Description: Associativity of functional addition. (Contributed by NM, 19-Oct-2014.)
Hypotheses
Ref Expression
lfladdcl.r 𝑅 = (Scalar‘𝑊)
lfladdcl.p + = (+g𝑅)
lfladdcl.f 𝐹 = (LFnl‘𝑊)
lfladdcl.w (𝜑𝑊 ∈ LMod)
lfladdcl.g (𝜑𝐺𝐹)
lfladdcl.h (𝜑𝐻𝐹)
lfladdass.i (𝜑𝐼𝐹)
Assertion
Ref Expression
lfladdass (𝜑 → ((𝐺𝑓 + 𝐻) ∘𝑓 + 𝐼) = (𝐺𝑓 + (𝐻𝑓 + 𝐼)))

Proof of Theorem lfladdass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6201 . 2 (𝜑 → (Base‘𝑊) ∈ V)
2 lfladdcl.w . . 3 (𝜑𝑊 ∈ LMod)
3 lfladdcl.g . . 3 (𝜑𝐺𝐹)
4 lfladdcl.r . . . 4 𝑅 = (Scalar‘𝑊)
5 eqid 2621 . . . 4 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2621 . . . 4 (Base‘𝑊) = (Base‘𝑊)
7 lfladdcl.f . . . 4 𝐹 = (LFnl‘𝑊)
84, 5, 6, 7lflf 34176 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:(Base‘𝑊)⟶(Base‘𝑅))
92, 3, 8syl2anc 693 . 2 (𝜑𝐺:(Base‘𝑊)⟶(Base‘𝑅))
10 lfladdcl.h . . 3 (𝜑𝐻𝐹)
114, 5, 6, 7lflf 34176 . . 3 ((𝑊 ∈ LMod ∧ 𝐻𝐹) → 𝐻:(Base‘𝑊)⟶(Base‘𝑅))
122, 10, 11syl2anc 693 . 2 (𝜑𝐻:(Base‘𝑊)⟶(Base‘𝑅))
13 lfladdass.i . . 3 (𝜑𝐼𝐹)
144, 5, 6, 7lflf 34176 . . 3 ((𝑊 ∈ LMod ∧ 𝐼𝐹) → 𝐼:(Base‘𝑊)⟶(Base‘𝑅))
152, 13, 14syl2anc 693 . 2 (𝜑𝐼:(Base‘𝑊)⟶(Base‘𝑅))
164lmodring 18865 . . . 4 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
17 ringgrp 18546 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
182, 16, 173syl 18 . . 3 (𝜑𝑅 ∈ Grp)
19 lfladdcl.p . . . 4 + = (+g𝑅)
205, 19grpass 17425 . . 3 ((𝑅 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
2118, 20sylan 488 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
221, 9, 12, 15, 21caofass 6928 1 (𝜑 → ((𝐺𝑓 + 𝐻) ∘𝑓 + 𝐼) = (𝐺𝑓 + (𝐻𝑓 + 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037   = wceq 1482  wcel 1989  Vcvv 3198  wf 5882  cfv 5886  (class class class)co 6647  𝑓 cof 6892  Basecbs 15851  +gcplusg 15935  Scalarcsca 15938  Grpcgrp 17416  Ringcrg 18541  LModclmod 18857  LFnlclfn 34170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-of 6894  df-map 7856  df-sgrp 17278  df-mnd 17289  df-grp 17419  df-ring 18543  df-lmod 18859  df-lfl 34171
This theorem is referenced by:  ldualgrplem  34258
  Copyright terms: Public domain W3C validator