Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflsub Structured version   Visualization version   GIF version

Theorem lflsub 34672
Description: Property of a linear functional. (lnfnaddi 29030 analog.) (Contributed by NM, 18-Apr-2014.)
Hypotheses
Ref Expression
lflsub.d 𝐷 = (Scalar‘𝑊)
lflsub.m 𝑀 = (-g𝐷)
lflsub.v 𝑉 = (Base‘𝑊)
lflsub.a = (-g𝑊)
lflsub.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lflsub ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 𝑌)) = ((𝐺𝑋)𝑀(𝐺𝑌)))

Proof of Theorem lflsub
StepHypRef Expression
1 simp1 1081 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑊 ∈ LMod)
2 simp3l 1109 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑋𝑉)
3 lflsub.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
43lmodring 18919 . . . . . . . . 9 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
543ad2ant1 1102 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐷 ∈ Ring)
6 ringgrp 18598 . . . . . . . 8 (𝐷 ∈ Ring → 𝐷 ∈ Grp)
75, 6syl 17 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐷 ∈ Grp)
8 eqid 2651 . . . . . . . . 9 (Base‘𝐷) = (Base‘𝐷)
9 eqid 2651 . . . . . . . . 9 (1r𝐷) = (1r𝐷)
108, 9ringidcl 18614 . . . . . . . 8 (𝐷 ∈ Ring → (1r𝐷) ∈ (Base‘𝐷))
115, 10syl 17 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (1r𝐷) ∈ (Base‘𝐷))
12 eqid 2651 . . . . . . . 8 (invg𝐷) = (invg𝐷)
138, 12grpinvcl 17514 . . . . . . 7 ((𝐷 ∈ Grp ∧ (1r𝐷) ∈ (Base‘𝐷)) → ((invg𝐷)‘(1r𝐷)) ∈ (Base‘𝐷))
147, 11, 13syl2anc 694 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((invg𝐷)‘(1r𝐷)) ∈ (Base‘𝐷))
15 simp3r 1110 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑌𝑉)
16 lflsub.v . . . . . . 7 𝑉 = (Base‘𝑊)
17 eqid 2651 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
1816, 3, 17, 8lmodvscl 18928 . . . . . 6 ((𝑊 ∈ LMod ∧ ((invg𝐷)‘(1r𝐷)) ∈ (Base‘𝐷) ∧ 𝑌𝑉) → (((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌) ∈ 𝑉)
191, 14, 15, 18syl3anc 1366 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌) ∈ 𝑉)
20 eqid 2651 . . . . . 6 (+g𝑊) = (+g𝑊)
2116, 20lmodcom 18957 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ (((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌) ∈ 𝑉) → (𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)) = ((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋))
221, 2, 19, 21syl3anc 1366 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)) = ((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋))
2322fveq2d 6233 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌))) = (𝐺‘((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)))
24 simp2 1082 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐺𝐹)
25 eqid 2651 . . . . 5 (+g𝐷) = (+g𝐷)
26 eqid 2651 . . . . 5 (.r𝐷) = (.r𝐷)
27 lflsub.f . . . . 5 𝐹 = (LFnl‘𝑊)
2816, 20, 3, 17, 8, 25, 26, 27lfli 34666 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (((invg𝐷)‘(1r𝐷)) ∈ (Base‘𝐷) ∧ 𝑌𝑉𝑋𝑉)) → (𝐺‘((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)) = ((((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌))(+g𝐷)(𝐺𝑋)))
291, 24, 14, 15, 2, 28syl113anc 1378 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)) = ((((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌))(+g𝐷)(𝐺𝑋)))
303, 8, 16, 27lflcl 34669 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑌𝑉) → (𝐺𝑌) ∈ (Base‘𝐷))
31303adant3l 1362 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺𝑌) ∈ (Base‘𝐷))
328, 26, 9, 12, 5, 31ringnegl 18640 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌)) = ((invg𝐷)‘(𝐺𝑌)))
3332oveq1d 6705 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌))(+g𝐷)(𝐺𝑋)) = (((invg𝐷)‘(𝐺𝑌))(+g𝐷)(𝐺𝑋)))
34 ringabl 18626 . . . . . 6 (𝐷 ∈ Ring → 𝐷 ∈ Abel)
355, 34syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐷 ∈ Abel)
368, 12grpinvcl 17514 . . . . . 6 ((𝐷 ∈ Grp ∧ (𝐺𝑌) ∈ (Base‘𝐷)) → ((invg𝐷)‘(𝐺𝑌)) ∈ (Base‘𝐷))
377, 31, 36syl2anc 694 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((invg𝐷)‘(𝐺𝑌)) ∈ (Base‘𝐷))
383, 8, 16, 27lflcl 34669 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝐷))
39383adant3r 1363 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺𝑋) ∈ (Base‘𝐷))
408, 25ablcom 18256 . . . . 5 ((𝐷 ∈ Abel ∧ ((invg𝐷)‘(𝐺𝑌)) ∈ (Base‘𝐷) ∧ (𝐺𝑋) ∈ (Base‘𝐷)) → (((invg𝐷)‘(𝐺𝑌))(+g𝐷)(𝐺𝑋)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
4135, 37, 39, 40syl3anc 1366 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (((invg𝐷)‘(𝐺𝑌))(+g𝐷)(𝐺𝑋)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
4233, 41eqtrd 2685 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌))(+g𝐷)(𝐺𝑋)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
4323, 29, 423eqtrd 2689 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌))) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
44 lflsub.a . . . . 5 = (-g𝑊)
4516, 20, 44, 3, 17, 12, 9lmodvsubval2 18966 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) = (𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)))
461, 2, 15, 45syl3anc 1366 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝑋 𝑌) = (𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)))
4746fveq2d 6233 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 𝑌)) = (𝐺‘(𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌))))
48 lflsub.m . . . 4 𝑀 = (-g𝐷)
498, 25, 12, 48grpsubval 17512 . . 3 (((𝐺𝑋) ∈ (Base‘𝐷) ∧ (𝐺𝑌) ∈ (Base‘𝐷)) → ((𝐺𝑋)𝑀(𝐺𝑌)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
5039, 31, 49syl2anc 694 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((𝐺𝑋)𝑀(𝐺𝑌)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
5143, 47, 503eqtr4d 2695 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 𝑌)) = ((𝐺𝑋)𝑀(𝐺𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  cfv 5926  (class class class)co 6690  Basecbs 15904  +gcplusg 15988  .rcmulr 15989  Scalarcsca 15991   ·𝑠 cvsca 15992  Grpcgrp 17469  invgcminusg 17470  -gcsg 17471  Abelcabl 18240  1rcur 18547  Ringcrg 18593  LModclmod 18911  LFnlclfn 34662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-plusg 16001  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-lmod 18913  df-lfl 34663
This theorem is referenced by:  eqlkr  34704  lkrlsp  34707  lclkrlem2m  37125  hdmaplns1  37517
  Copyright terms: Public domain W3C validator