MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgam1 Structured version   Visualization version   GIF version

Theorem lgam1 25635
Description: The log-Gamma function at one. (Contributed by Mario Carneiro, 9-Jul-2017.)
Assertion
Ref Expression
lgam1 (log Γ‘1) = 0

Proof of Theorem lgam1
StepHypRef Expression
1 peano2nn 11644 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
21nnrpd 12423 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℝ+)
3 nnrp 12394 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
42, 3rpdivcld 12442 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → ((𝑚 + 1) / 𝑚) ∈ ℝ+)
54relogcld 25200 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ)
65recnd 10663 . . . . . . . . . 10 (𝑚 ∈ ℕ → (log‘((𝑚 + 1) / 𝑚)) ∈ ℂ)
76mulid2d 10653 . . . . . . . . 9 (𝑚 ∈ ℕ → (1 · (log‘((𝑚 + 1) / 𝑚))) = (log‘((𝑚 + 1) / 𝑚)))
8 nncn 11640 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
9 nnne0 11665 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
108, 9dividd 11408 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (𝑚 / 𝑚) = 1)
1110oveq1d 7165 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑚 / 𝑚) + (1 / 𝑚)) = (1 + (1 / 𝑚)))
12 1cnd 10630 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 1 ∈ ℂ)
138, 12, 8, 9divdird 11448 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑚 + 1) / 𝑚) = ((𝑚 / 𝑚) + (1 / 𝑚)))
148, 9reccld 11403 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℂ)
1514, 12addcomd 10836 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((1 / 𝑚) + 1) = (1 + (1 / 𝑚)))
1611, 13, 153eqtr4rd 2867 . . . . . . . . . 10 (𝑚 ∈ ℕ → ((1 / 𝑚) + 1) = ((𝑚 + 1) / 𝑚))
1716fveq2d 6668 . . . . . . . . 9 (𝑚 ∈ ℕ → (log‘((1 / 𝑚) + 1)) = (log‘((𝑚 + 1) / 𝑚)))
187, 17oveq12d 7168 . . . . . . . 8 (𝑚 ∈ ℕ → ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1))) = ((log‘((𝑚 + 1) / 𝑚)) − (log‘((𝑚 + 1) / 𝑚))))
196subidd 10979 . . . . . . . 8 (𝑚 ∈ ℕ → ((log‘((𝑚 + 1) / 𝑚)) − (log‘((𝑚 + 1) / 𝑚))) = 0)
2018, 19eqtrd 2856 . . . . . . 7 (𝑚 ∈ ℕ → ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1))) = 0)
2120mpteq2ia 5149 . . . . . 6 (𝑚 ∈ ℕ ↦ ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1)))) = (𝑚 ∈ ℕ ↦ 0)
22 fconstmpt 5608 . . . . . 6 (ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0)
23 nnuz 12275 . . . . . . 7 ℕ = (ℤ‘1)
2423xpeq1i 5575 . . . . . 6 (ℕ × {0}) = ((ℤ‘1) × {0})
2521, 22, 243eqtr2ri 2851 . . . . 5 ((ℤ‘1) × {0}) = (𝑚 ∈ ℕ ↦ ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1))))
26 ax-1cn 10589 . . . . . . 7 1 ∈ ℂ
27 1nn 11643 . . . . . . . 8 1 ∈ ℕ
28 eldifn 4103 . . . . . . . 8 (1 ∈ (ℤ ∖ ℕ) → ¬ 1 ∈ ℕ)
2927, 28mt2 202 . . . . . . 7 ¬ 1 ∈ (ℤ ∖ ℕ)
30 eldif 3945 . . . . . . 7 (1 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (1 ∈ ℂ ∧ ¬ 1 ∈ (ℤ ∖ ℕ)))
3126, 29, 30mpbir2an 709 . . . . . 6 1 ∈ (ℂ ∖ (ℤ ∖ ℕ))
3231a1i 11 . . . . 5 (⊤ → 1 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
3325, 32lgamcvg 25625 . . . 4 (⊤ → seq1( + , ((ℤ‘1) × {0})) ⇝ ((log Γ‘1) + (log‘1)))
3433mptru 1540 . . 3 seq1( + , ((ℤ‘1) × {0})) ⇝ ((log Γ‘1) + (log‘1))
35 log1 25163 . . . . 5 (log‘1) = 0
3635oveq2i 7161 . . . 4 ((log Γ‘1) + (log‘1)) = ((log Γ‘1) + 0)
37 lgamcl 25612 . . . . . 6 (1 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘1) ∈ ℂ)
3831, 37ax-mp 5 . . . . 5 (log Γ‘1) ∈ ℂ
3938addid1i 10821 . . . 4 ((log Γ‘1) + 0) = (log Γ‘1)
4036, 39eqtri 2844 . . 3 ((log Γ‘1) + (log‘1)) = (log Γ‘1)
4134, 40breqtri 5083 . 2 seq1( + , ((ℤ‘1) × {0})) ⇝ (log Γ‘1)
42 1z 12006 . . 3 1 ∈ ℤ
43 serclim0 14928 . . 3 (1 ∈ ℤ → seq1( + , ((ℤ‘1) × {0})) ⇝ 0)
4442, 43ax-mp 5 . 2 seq1( + , ((ℤ‘1) × {0})) ⇝ 0
45 climuni 14903 . 2 ((seq1( + , ((ℤ‘1) × {0})) ⇝ (log Γ‘1) ∧ seq1( + , ((ℤ‘1) × {0})) ⇝ 0) → (log Γ‘1) = 0)
4641, 44, 45mp2an 690 1 (log Γ‘1) = 0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1533  wtru 1534  wcel 2110  cdif 3932  {csn 4560   class class class wbr 5058  cmpt 5138   × cxp 5547  cfv 6349  (class class class)co 7150  cc 10529  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  cmin 10864   / cdiv 11291  cn 11632  cz 11975  cuz 12237  seqcseq 13363  cli 14835  logclog 25132  log Γclgam 25587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415  df-sin 15417  df-cos 15418  df-tan 15419  df-pi 15420  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-haus 21917  df-cmp 21989  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-limc 24458  df-dv 24459  df-ulm 24959  df-log 25134  df-cxp 25135  df-lgam 25590
This theorem is referenced by:  gam1  25636
  Copyright terms: Public domain W3C validator