MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamcvglem Structured version   Visualization version   GIF version

Theorem lgamcvglem 24511
Description: Lemma for lgamf 24513 and lgamcvg 24525. (Contributed by Mario Carneiro, 8-Jul-2017.)
Hypotheses
Ref Expression
lgamucov.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))}
lgamucov.a (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
lgamcvglem.g 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
Assertion
Ref Expression
lgamcvglem (𝜑 → ((log Γ‘𝐴) ∈ ℂ ∧ seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴))))
Distinct variable groups:   𝑘,𝑚,𝑟,𝑥,𝐴   𝐺,𝑟   𝜑,𝑘,𝑚,𝑟,𝑥   𝑈,𝑚
Allowed substitution hints:   𝑈(𝑥,𝑘,𝑟)   𝐺(𝑥,𝑘,𝑚)

Proof of Theorem lgamcvglem
Dummy variables 𝑛 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgamucov.u . . 3 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))}
2 lgamucov.a . . 3 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
31, 2lgamucov2 24510 . 2 (𝜑 → ∃𝑟 ∈ ℕ 𝐴𝑈)
4 fveq2 6088 . . . . 5 (𝑧 = 𝐴 → (log Γ‘𝑧) = (log Γ‘𝐴))
54eleq1d 2671 . . . 4 (𝑧 = 𝐴 → ((log Γ‘𝑧) ∈ ℂ ↔ (log Γ‘𝐴) ∈ ℂ))
6 simprl 789 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → 𝑟 ∈ ℕ)
7 fveq2 6088 . . . . . . . . . 10 (𝑥 = 𝑡 → (abs‘𝑥) = (abs‘𝑡))
87breq1d 4587 . . . . . . . . 9 (𝑥 = 𝑡 → ((abs‘𝑥) ≤ 𝑟 ↔ (abs‘𝑡) ≤ 𝑟))
9 oveq1 6534 . . . . . . . . . . . 12 (𝑥 = 𝑡 → (𝑥 + 𝑘) = (𝑡 + 𝑘))
109fveq2d 6092 . . . . . . . . . . 11 (𝑥 = 𝑡 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝑡 + 𝑘)))
1110breq2d 4589 . . . . . . . . . 10 (𝑥 = 𝑡 → ((1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘))))
1211ralbidv 2968 . . . . . . . . 9 (𝑥 = 𝑡 → (∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘))))
138, 12anbi12d 742 . . . . . . . 8 (𝑥 = 𝑡 → (((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝑡) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘)))))
1413cbvrabv 3171 . . . . . . 7 {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))} = {𝑡 ∈ ℂ ∣ ((abs‘𝑡) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘)))}
151, 14eqtri 2631 . . . . . 6 𝑈 = {𝑡 ∈ ℂ ∣ ((abs‘𝑡) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘)))}
16 eqid 2609 . . . . . 6 (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
176, 15, 16lgamgulm2 24507 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → (∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ ∧ seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))))
1817simpld 473 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → ∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ)
19 simprr 791 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → 𝐴𝑈)
205, 18, 19rspcdva 3287 . . 3 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → (log Γ‘𝐴) ∈ ℂ)
21 nnuz 11558 . . . . 5 ℕ = (ℤ‘1)
22 1zzd 11244 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → 1 ∈ ℤ)
23 1z 11243 . . . . . . . 8 1 ∈ ℤ
24 seqfn 12633 . . . . . . . 8 (1 ∈ ℤ → seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn (ℤ‘1))
2523, 24ax-mp 5 . . . . . . 7 seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn (ℤ‘1)
2621fneq2i 5886 . . . . . . 7 (seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn ℕ ↔ seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn (ℤ‘1))
2725, 26mpbir 219 . . . . . 6 seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn ℕ
2817simprd 477 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))
29 ulmf2 23887 . . . . . 6 ((seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn ℕ ∧ seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))) → seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))):ℕ⟶(ℂ ↑𝑚 𝑈))
3027, 28, 29sylancr 693 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))):ℕ⟶(ℂ ↑𝑚 𝑈))
31 seqex 12623 . . . . . 6 seq1( + , 𝐺) ∈ V
3231a1i 11 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → seq1( + , 𝐺) ∈ V)
33 cnex 9874 . . . . . . . . 9 ℂ ∈ V
341, 33rabex2 4737 . . . . . . . 8 𝑈 ∈ V
3534a1i 11 . . . . . . 7 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → 𝑈 ∈ V)
36 simpr 475 . . . . . . . 8 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
3736, 21syl6eleq 2697 . . . . . . 7 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
38 fz1ssnn 12201 . . . . . . . 8 (1...𝑛) ⊆ ℕ
3938a1i 11 . . . . . . 7 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
40 ovex 6555 . . . . . . . 8 ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) ∈ V
4140a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ (𝑚 ∈ ℕ ∧ 𝑧𝑈)) → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) ∈ V)
4235, 37, 39, 41seqof2 12679 . . . . . 6 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → (seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛) = (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛)))
43 simplr 787 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → 𝑧 = 𝐴)
4443oveq1d 6542 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → (𝑧 · (log‘((𝑚 + 1) / 𝑚))) = (𝐴 · (log‘((𝑚 + 1) / 𝑚))))
4543oveq1d 6542 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → (𝑧 / 𝑚) = (𝐴 / 𝑚))
4645oveq1d 6542 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → ((𝑧 / 𝑚) + 1) = ((𝐴 / 𝑚) + 1))
4746fveq2d 6092 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → (log‘((𝑧 / 𝑚) + 1)) = (log‘((𝐴 / 𝑚) + 1)))
4844, 47oveq12d 6545 . . . . . . . . . 10 (((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) = ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
4948mpteq2dva 4666 . . . . . . . . 9 ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))))
50 lgamcvglem.g . . . . . . . . 9 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
5149, 50syl6eqr 2661 . . . . . . . 8 ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) = 𝐺)
5251seqeq3d 12629 . . . . . . 7 ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) = seq1( + , 𝐺))
5352fveq1d 6090 . . . . . 6 ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛) = (seq1( + , 𝐺)‘𝑛))
54 simplrr 796 . . . . . 6 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → 𝐴𝑈)
55 fvex 6098 . . . . . . 7 (seq1( + , 𝐺)‘𝑛) ∈ V
5655a1i 11 . . . . . 6 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → (seq1( + , 𝐺)‘𝑛) ∈ V)
5742, 53, 54, 56fvmptd 6182 . . . . 5 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → ((seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛)‘𝐴) = (seq1( + , 𝐺)‘𝑛))
5821, 22, 30, 19, 32, 57, 28ulmclm 23890 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → seq1( + , 𝐺) ⇝ ((𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))‘𝐴))
59 fveq2 6088 . . . . . . 7 (𝑧 = 𝐴 → (log‘𝑧) = (log‘𝐴))
604, 59oveq12d 6545 . . . . . 6 (𝑧 = 𝐴 → ((log Γ‘𝑧) + (log‘𝑧)) = ((log Γ‘𝐴) + (log‘𝐴)))
61 eqid 2609 . . . . . 6 (𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))) = (𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))
62 ovex 6555 . . . . . 6 ((log Γ‘𝐴) + (log‘𝐴)) ∈ V
6360, 61, 62fvmpt 6176 . . . . 5 (𝐴𝑈 → ((𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))‘𝐴) = ((log Γ‘𝐴) + (log‘𝐴)))
6419, 63syl 17 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → ((𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))‘𝐴) = ((log Γ‘𝐴) + (log‘𝐴)))
6558, 64breqtrd 4603 . . 3 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴)))
6620, 65jca 552 . 2 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → ((log Γ‘𝐴) ∈ ℂ ∧ seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴))))
673, 66rexlimddv 3016 1 (𝜑 → ((log Γ‘𝐴) ∈ ℂ ∧ seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wral 2895  {crab 2899  Vcvv 3172  cdif 3536  wss 3539   class class class wbr 4577  cmpt 4637   Fn wfn 5785  wf 5786  cfv 5790  (class class class)co 6527  𝑓 cof 6771  𝑚 cmap 7722  cc 9791  1c1 9794   + caddc 9796   · cmul 9798  cle 9932  cmin 10118   / cdiv 10536  cn 10870  0cn0 11142  cz 11213  cuz 11522  ...cfz 12155  seqcseq 12621  abscabs 13771  cli 14012  𝑢culm 23879  logclog 24050  log Γclgam 24487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871  ax-addf 9872  ax-mulf 9873
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6773  df-om 6936  df-1st 7037  df-2nd 7038  df-supp 7161  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-2o 7426  df-oadd 7429  df-er 7607  df-map 7724  df-pm 7725  df-ixp 7773  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-fsupp 8137  df-fi 8178  df-sup 8209  df-inf 8210  df-oi 8276  df-card 8626  df-cda 8851  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-q 11624  df-rp 11668  df-xneg 11781  df-xadd 11782  df-xmul 11783  df-ioo 12009  df-ioc 12010  df-ico 12011  df-icc 12012  df-fz 12156  df-fzo 12293  df-fl 12413  df-mod 12489  df-seq 12622  df-exp 12681  df-fac 12881  df-bc 12910  df-hash 12938  df-shft 13604  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-limsup 13999  df-clim 14016  df-rlim 14017  df-sum 14214  df-ef 14586  df-sin 14588  df-cos 14589  df-tan 14590  df-pi 14591  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-ress 15651  df-plusg 15730  df-mulr 15731  df-starv 15732  df-sca 15733  df-vsca 15734  df-ip 15735  df-tset 15736  df-ple 15737  df-ds 15740  df-unif 15741  df-hom 15742  df-cco 15743  df-rest 15855  df-topn 15856  df-0g 15874  df-gsum 15875  df-topgen 15876  df-pt 15877  df-prds 15880  df-xrs 15934  df-qtop 15939  df-imas 15940  df-xps 15942  df-mre 16018  df-mrc 16019  df-acs 16021  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-submnd 17108  df-mulg 17313  df-cntz 17522  df-cmn 17967  df-psmet 19508  df-xmet 19509  df-met 19510  df-bl 19511  df-mopn 19512  df-fbas 19513  df-fg 19514  df-cnfld 19517  df-top 20469  df-bases 20470  df-topon 20471  df-topsp 20472  df-cld 20581  df-ntr 20582  df-cls 20583  df-nei 20660  df-lp 20698  df-perf 20699  df-cn 20789  df-cnp 20790  df-haus 20877  df-cmp 20948  df-tx 21123  df-hmeo 21316  df-fil 21408  df-fm 21500  df-flim 21501  df-flf 21502  df-xms 21883  df-ms 21884  df-tms 21885  df-cncf 22437  df-limc 23381  df-dv 23382  df-ulm 23880  df-log 24052  df-cxp 24053  df-lgam 24490
This theorem is referenced by:  lgamcl  24512  lgamcvg  24525
  Copyright terms: Public domain W3C validator