MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem5 Structured version   Visualization version   GIF version

Theorem lgamgulmlem5 25612
Description: Lemma for lgamgulm 25614. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.g 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
lgamgulm.t 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
Assertion
Ref Expression
lgamgulmlem5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝐺𝑛)‘𝑦)) ≤ (𝑇𝑛))
Distinct variable groups:   𝑦,𝑛,𝐺   𝑥,𝑦   𝑘,𝑚,𝑛,𝑥,𝑦,𝑧,𝑅   𝑈,𝑚,𝑛,𝑦,𝑧   𝜑,𝑚,𝑛,𝑥,𝑦,𝑧   𝑇,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑘)   𝑇(𝑥,𝑧,𝑘,𝑚)   𝑈(𝑥,𝑘)   𝐺(𝑥,𝑧,𝑘,𝑚)

Proof of Theorem lgamgulmlem5
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 breq2 5072 . . 3 ((𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) → ((abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) ↔ (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))))
2 breq2 5072 . . 3 (((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) → ((abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) ↔ (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))))
3 lgamgulm.r . . . . . 6 (𝜑𝑅 ∈ ℕ)
43adantr 483 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑅 ∈ ℕ)
54adantr 483 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ (2 · 𝑅) ≤ 𝑛) → 𝑅 ∈ ℕ)
6 lgamgulm.u . . . . 5 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
7 fveq2 6672 . . . . . . . 8 (𝑥 = 𝑡 → (abs‘𝑥) = (abs‘𝑡))
87breq1d 5078 . . . . . . 7 (𝑥 = 𝑡 → ((abs‘𝑥) ≤ 𝑅 ↔ (abs‘𝑡) ≤ 𝑅))
9 fvoveq1 7181 . . . . . . . . 9 (𝑥 = 𝑡 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝑡 + 𝑘)))
109breq2d 5080 . . . . . . . 8 (𝑥 = 𝑡 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑡 + 𝑘))))
1110ralbidv 3199 . . . . . . 7 (𝑥 = 𝑡 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑡 + 𝑘))))
128, 11anbi12d 632 . . . . . 6 (𝑥 = 𝑡 → (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝑡) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑡 + 𝑘)))))
1312cbvrabv 3493 . . . . 5 {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} = {𝑡 ∈ ℂ ∣ ((abs‘𝑡) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑡 + 𝑘)))}
146, 13eqtri 2846 . . . 4 𝑈 = {𝑡 ∈ ℂ ∣ ((abs‘𝑡) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑡 + 𝑘)))}
15 simplrl 775 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ (2 · 𝑅) ≤ 𝑛) → 𝑛 ∈ ℕ)
16 simprr 771 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑦𝑈)
1716adantr 483 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ (2 · 𝑅) ≤ 𝑛) → 𝑦𝑈)
18 simpr 487 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ (2 · 𝑅) ≤ 𝑛) → (2 · 𝑅) ≤ 𝑛)
195, 14, 15, 17, 18lgamgulmlem3 25610 . . 3 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ (2 · 𝑅) ≤ 𝑛) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
203, 6lgamgulmlem1 25608 . . . . . . . . . . 11 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
2120adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
2221, 16sseldd 3970 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑦 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2322eldifad 3950 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑦 ∈ ℂ)
24 simprl 769 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ∈ ℕ)
2524peano2nnd 11657 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑛 + 1) ∈ ℕ)
2625nnrpd 12432 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑛 + 1) ∈ ℝ+)
2724nnrpd 12432 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ∈ ℝ+)
2826, 27rpdivcld 12451 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑛 + 1) / 𝑛) ∈ ℝ+)
2928relogcld 25208 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℝ)
3029recnd 10671 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℂ)
3123, 30mulcld 10663 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑦 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℂ)
3224nncnd 11656 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ∈ ℂ)
3324nnne0d 11690 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ≠ 0)
3423, 32, 33divcld 11418 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑦 / 𝑛) ∈ ℂ)
35 1cnd 10638 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 1 ∈ ℂ)
3634, 35addcld 10662 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 / 𝑛) + 1) ∈ ℂ)
3722, 24dmgmdivn0 25607 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 / 𝑛) + 1) ≠ 0)
3836, 37logcld 25156 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘((𝑦 / 𝑛) + 1)) ∈ ℂ)
3931, 38subcld 10999 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))) ∈ ℂ)
4039abscld 14798 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ∈ ℝ)
4131abscld 14798 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) ∈ ℝ)
4238abscld 14798 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘((𝑦 / 𝑛) + 1))) ∈ ℝ)
4341, 42readdcld 10672 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) + (abs‘(log‘((𝑦 / 𝑛) + 1)))) ∈ ℝ)
444nnred 11655 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑅 ∈ ℝ)
4544, 29remulcld 10673 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℝ)
464peano2nnd 11657 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ∈ ℕ)
4746nnrpd 12432 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ∈ ℝ+)
4847, 27rpmulcld 12450 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑅 + 1) · 𝑛) ∈ ℝ+)
4948relogcld 25208 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘((𝑅 + 1) · 𝑛)) ∈ ℝ)
50 pire 25046 . . . . . . . 8 π ∈ ℝ
5150a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → π ∈ ℝ)
5249, 51readdcld 10672 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((log‘((𝑅 + 1) · 𝑛)) + π) ∈ ℝ)
5345, 52readdcld 10672 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) ∈ ℝ)
5431, 38abs2dif2d 14820 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ ((abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) + (abs‘(log‘((𝑦 / 𝑛) + 1)))))
5523, 30absmuld 14816 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) = ((abs‘𝑦) · (abs‘(log‘((𝑛 + 1) / 𝑛)))))
5628rpred 12434 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑛 + 1) / 𝑛) ∈ ℝ)
5732mulid2d 10661 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 · 𝑛) = 𝑛)
5824nnred 11655 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ∈ ℝ)
5958lep1d 11573 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ≤ (𝑛 + 1))
6057, 59eqbrtrd 5090 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 · 𝑛) ≤ (𝑛 + 1))
61 1red 10644 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 1 ∈ ℝ)
6258, 61readdcld 10672 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑛 + 1) ∈ ℝ)
6361, 62, 27lemuldivd 12483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((1 · 𝑛) ≤ (𝑛 + 1) ↔ 1 ≤ ((𝑛 + 1) / 𝑛)))
6460, 63mpbid 234 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 1 ≤ ((𝑛 + 1) / 𝑛))
6556, 64logge0d 25215 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 0 ≤ (log‘((𝑛 + 1) / 𝑛)))
6629, 65absidd 14784 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘((𝑛 + 1) / 𝑛))) = (log‘((𝑛 + 1) / 𝑛)))
6766oveq2d 7174 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) · (abs‘(log‘((𝑛 + 1) / 𝑛)))) = ((abs‘𝑦) · (log‘((𝑛 + 1) / 𝑛))))
6855, 67eqtrd 2858 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) = ((abs‘𝑦) · (log‘((𝑛 + 1) / 𝑛))))
6923abscld 14798 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘𝑦) ∈ ℝ)
70 fveq2 6672 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (abs‘𝑥) = (abs‘𝑦))
7170breq1d 5078 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((abs‘𝑥) ≤ 𝑅 ↔ (abs‘𝑦) ≤ 𝑅))
72 fvoveq1 7181 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝑦 + 𝑘)))
7372breq2d 5080 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘))))
7473ralbidv 3199 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘))))
7571, 74anbi12d 632 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝑦) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘)))))
7675, 6elrab2 3685 . . . . . . . . . . 11 (𝑦𝑈 ↔ (𝑦 ∈ ℂ ∧ ((abs‘𝑦) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘)))))
7776simprbi 499 . . . . . . . . . 10 (𝑦𝑈 → ((abs‘𝑦) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘))))
7877ad2antll 727 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘))))
7978simpld 497 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘𝑦) ≤ 𝑅)
8069, 44, 29, 65, 79lemul1ad 11581 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) · (log‘((𝑛 + 1) / 𝑛))) ≤ (𝑅 · (log‘((𝑛 + 1) / 𝑛))))
8168, 80eqbrtrd 5090 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) ≤ (𝑅 · (log‘((𝑛 + 1) / 𝑛))))
8236, 37absrpcld 14810 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ∈ ℝ+)
8382relogcld 25208 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘(abs‘((𝑦 / 𝑛) + 1))) ∈ ℝ)
8483recnd 10671 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘(abs‘((𝑦 / 𝑛) + 1))) ∈ ℂ)
8584abscld 14798 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) ∈ ℝ)
8685, 51readdcld 10672 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) + π) ∈ ℝ)
87 abslogle 25203 . . . . . . . 8 ((((𝑦 / 𝑛) + 1) ∈ ℂ ∧ ((𝑦 / 𝑛) + 1) ≠ 0) → (abs‘(log‘((𝑦 / 𝑛) + 1))) ≤ ((abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) + π))
8836, 37, 87syl2anc 586 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘((𝑦 / 𝑛) + 1))) ≤ ((abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) + π))
89 1rp 12396 . . . . . . . . . . . 12 1 ∈ ℝ+
90 relogdiv 25178 . . . . . . . . . . . 12 ((1 ∈ ℝ+ ∧ ((𝑅 + 1) · 𝑛) ∈ ℝ+) → (log‘(1 / ((𝑅 + 1) · 𝑛))) = ((log‘1) − (log‘((𝑅 + 1) · 𝑛))))
9189, 48, 90sylancr 589 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘(1 / ((𝑅 + 1) · 𝑛))) = ((log‘1) − (log‘((𝑅 + 1) · 𝑛))))
92 log1 25171 . . . . . . . . . . . . 13 (log‘1) = 0
9392oveq1i 7168 . . . . . . . . . . . 12 ((log‘1) − (log‘((𝑅 + 1) · 𝑛))) = (0 − (log‘((𝑅 + 1) · 𝑛)))
94 df-neg 10875 . . . . . . . . . . . 12 -(log‘((𝑅 + 1) · 𝑛)) = (0 − (log‘((𝑅 + 1) · 𝑛)))
9593, 94eqtr4i 2849 . . . . . . . . . . 11 ((log‘1) − (log‘((𝑅 + 1) · 𝑛))) = -(log‘((𝑅 + 1) · 𝑛))
9691, 95syl6req 2875 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → -(log‘((𝑅 + 1) · 𝑛)) = (log‘(1 / ((𝑅 + 1) · 𝑛))))
9746nnrecred 11691 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / (𝑅 + 1)) ∈ ℝ)
9823, 32addcld 10662 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑦 + 𝑛) ∈ ℂ)
9998abscld 14798 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 + 𝑛)) ∈ ℝ)
1004nnrecred 11691 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / 𝑅) ∈ ℝ)
1014nnrpd 12432 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑅 ∈ ℝ+)
102 0le1 11165 . . . . . . . . . . . . . . . 16 0 ≤ 1
103102a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 0 ≤ 1)
10444lep1d 11573 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑅 ≤ (𝑅 + 1))
105101, 47, 61, 103, 104lediv2ad 12456 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / (𝑅 + 1)) ≤ (1 / 𝑅))
106 oveq2 7166 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝑦 + 𝑘) = (𝑦 + 𝑛))
107106fveq2d 6676 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (abs‘(𝑦 + 𝑘)) = (abs‘(𝑦 + 𝑛)))
108107breq2d 5080 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑛))))
10978simprd 498 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘)))
11024nnnn0d 11958 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ∈ ℕ0)
111108, 109, 110rspcdva 3627 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑛)))
11297, 100, 99, 105, 111letrd 10799 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / (𝑅 + 1)) ≤ (abs‘(𝑦 + 𝑛)))
11397, 99, 27, 112lediv1dd 12492 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((1 / (𝑅 + 1)) / 𝑛) ≤ ((abs‘(𝑦 + 𝑛)) / 𝑛))
11446nncnd 11656 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ∈ ℂ)
11546nnne0d 11690 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ≠ 0)
116114, 32, 115, 33recdiv2d 11436 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((1 / (𝑅 + 1)) / 𝑛) = (1 / ((𝑅 + 1) · 𝑛)))
11723, 32, 32, 33divdird 11456 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 + 𝑛) / 𝑛) = ((𝑦 / 𝑛) + (𝑛 / 𝑛)))
11832, 33dividd 11416 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑛 / 𝑛) = 1)
119118oveq2d 7174 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 / 𝑛) + (𝑛 / 𝑛)) = ((𝑦 / 𝑛) + 1))
120117, 119eqtr2d 2859 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 / 𝑛) + 1) = ((𝑦 + 𝑛) / 𝑛))
121120fveq2d 6676 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) = (abs‘((𝑦 + 𝑛) / 𝑛)))
12298, 32, 33absdivd 14817 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 + 𝑛) / 𝑛)) = ((abs‘(𝑦 + 𝑛)) / (abs‘𝑛)))
12327rpge0d 12438 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 0 ≤ 𝑛)
12458, 123absidd 14784 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘𝑛) = 𝑛)
125124oveq2d 7174 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 + 𝑛)) / (abs‘𝑛)) = ((abs‘(𝑦 + 𝑛)) / 𝑛))
126121, 122, 1253eqtrrd 2863 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 + 𝑛)) / 𝑛) = (abs‘((𝑦 / 𝑛) + 1)))
127113, 116, 1263brtr3d 5099 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / ((𝑅 + 1) · 𝑛)) ≤ (abs‘((𝑦 / 𝑛) + 1)))
12848rpreccld 12444 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / ((𝑅 + 1) · 𝑛)) ∈ ℝ+)
129128, 82logled 25212 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((1 / ((𝑅 + 1) · 𝑛)) ≤ (abs‘((𝑦 / 𝑛) + 1)) ↔ (log‘(1 / ((𝑅 + 1) · 𝑛))) ≤ (log‘(abs‘((𝑦 / 𝑛) + 1)))))
130127, 129mpbid 234 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘(1 / ((𝑅 + 1) · 𝑛))) ≤ (log‘(abs‘((𝑦 / 𝑛) + 1))))
13196, 130eqbrtrd 5090 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → -(log‘((𝑅 + 1) · 𝑛)) ≤ (log‘(abs‘((𝑦 / 𝑛) + 1))))
13236abscld 14798 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ∈ ℝ)
13344, 61readdcld 10672 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ∈ ℝ)
13448rpred 12434 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑅 + 1) · 𝑛) ∈ ℝ)
13534abscld 14798 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 / 𝑛)) ∈ ℝ)
136135, 61readdcld 10672 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 / 𝑛)) + 1) ∈ ℝ)
13734, 35abstrid 14818 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ≤ ((abs‘(𝑦 / 𝑛)) + (abs‘1)))
138 abs1 14659 . . . . . . . . . . . . . 14 (abs‘1) = 1
139138oveq2i 7169 . . . . . . . . . . . . 13 ((abs‘(𝑦 / 𝑛)) + (abs‘1)) = ((abs‘(𝑦 / 𝑛)) + 1)
140137, 139breqtrdi 5109 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ≤ ((abs‘(𝑦 / 𝑛)) + 1))
14189a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 1 ∈ ℝ+)
14223absge0d 14806 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 0 ≤ (abs‘𝑦))
14324nnge1d 11688 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 1 ≤ 𝑛)
14469, 44, 141, 58, 142, 79, 143lediv12ad 12493 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) / 𝑛) ≤ (𝑅 / 1))
14523, 32, 33absdivd 14817 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 / 𝑛)) = ((abs‘𝑦) / (abs‘𝑛)))
146124oveq2d 7174 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) / (abs‘𝑛)) = ((abs‘𝑦) / 𝑛))
147145, 146eqtr2d 2859 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) / 𝑛) = (abs‘(𝑦 / 𝑛)))
1484nncnd 11656 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑅 ∈ ℂ)
149148div1d 11410 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 / 1) = 𝑅)
150144, 147, 1493brtr3d 5099 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 / 𝑛)) ≤ 𝑅)
151135, 44, 61, 150leadd1dd 11256 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 / 𝑛)) + 1) ≤ (𝑅 + 1))
152132, 136, 133, 140, 151letrd 10799 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ≤ (𝑅 + 1))
15347rpge0d 12438 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 0 ≤ (𝑅 + 1))
154133, 58, 153, 143lemulge11d 11579 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ≤ ((𝑅 + 1) · 𝑛))
155132, 133, 134, 152, 154letrd 10799 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ≤ ((𝑅 + 1) · 𝑛))
15682, 48logled 25212 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘((𝑦 / 𝑛) + 1)) ≤ ((𝑅 + 1) · 𝑛) ↔ (log‘(abs‘((𝑦 / 𝑛) + 1))) ≤ (log‘((𝑅 + 1) · 𝑛))))
157155, 156mpbid 234 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘(abs‘((𝑦 / 𝑛) + 1))) ≤ (log‘((𝑅 + 1) · 𝑛)))
15883, 49absled 14792 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) ≤ (log‘((𝑅 + 1) · 𝑛)) ↔ (-(log‘((𝑅 + 1) · 𝑛)) ≤ (log‘(abs‘((𝑦 / 𝑛) + 1))) ∧ (log‘(abs‘((𝑦 / 𝑛) + 1))) ≤ (log‘((𝑅 + 1) · 𝑛)))))
159131, 157, 158mpbir2and 711 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) ≤ (log‘((𝑅 + 1) · 𝑛)))
16085, 49, 51, 159leadd1dd 11256 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) + π) ≤ ((log‘((𝑅 + 1) · 𝑛)) + π))
16142, 86, 52, 88, 160letrd 10799 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘((𝑦 / 𝑛) + 1))) ≤ ((log‘((𝑅 + 1) · 𝑛)) + π))
16241, 42, 45, 52, 81, 161le2addd 11261 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) + (abs‘(log‘((𝑦 / 𝑛) + 1)))) ≤ ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))
16340, 43, 53, 54, 162letrd 10799 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))
164163adantr 483 . . 3 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ ¬ (2 · 𝑅) ≤ 𝑛) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))
1651, 2, 19, 164ifbothda 4506 . 2 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
166 oveq1 7165 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
167 id 22 . . . . . . . . . . . 12 (𝑚 = 𝑛𝑚 = 𝑛)
168166, 167oveq12d 7176 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑚 + 1) / 𝑚) = ((𝑛 + 1) / 𝑛))
169168fveq2d 6676 . . . . . . . . . 10 (𝑚 = 𝑛 → (log‘((𝑚 + 1) / 𝑚)) = (log‘((𝑛 + 1) / 𝑛)))
170169oveq2d 7174 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑧 · (log‘((𝑚 + 1) / 𝑚))) = (𝑧 · (log‘((𝑛 + 1) / 𝑛))))
171 oveq2 7166 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑧 / 𝑚) = (𝑧 / 𝑛))
172171fvoveq1d 7180 . . . . . . . . 9 (𝑚 = 𝑛 → (log‘((𝑧 / 𝑚) + 1)) = (log‘((𝑧 / 𝑛) + 1)))
173170, 172oveq12d 7176 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) = ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
174173mpteq2dv 5164 . . . . . . 7 (𝑚 = 𝑛 → (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) = (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1)))))
175 lgamgulm.g . . . . . . 7 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
176 cnex 10620 . . . . . . . . 9 ℂ ∈ V
1776, 176rabex2 5239 . . . . . . . 8 𝑈 ∈ V
178177mptex 6988 . . . . . . 7 (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1)))) ∈ V
179174, 175, 178fvmpt 6770 . . . . . 6 (𝑛 ∈ ℕ → (𝐺𝑛) = (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1)))))
180179ad2antrl 726 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝐺𝑛) = (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1)))))
181180fveq1d 6674 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝐺𝑛)‘𝑦) = ((𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))‘𝑦))
182 oveq1 7165 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 · (log‘((𝑛 + 1) / 𝑛))) = (𝑦 · (log‘((𝑛 + 1) / 𝑛))))
183 oveq1 7165 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧 / 𝑛) = (𝑦 / 𝑛))
184183fvoveq1d 7180 . . . . . . 7 (𝑧 = 𝑦 → (log‘((𝑧 / 𝑛) + 1)) = (log‘((𝑦 / 𝑛) + 1)))
185182, 184oveq12d 7176 . . . . . 6 (𝑧 = 𝑦 → ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) = ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))))
186 eqid 2823 . . . . . 6 (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1)))) = (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
187 ovex 7191 . . . . . 6 ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))) ∈ V
188185, 186, 187fvmpt 6770 . . . . 5 (𝑦𝑈 → ((𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))‘𝑦) = ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))))
189188ad2antll 727 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))‘𝑦) = ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))))
190181, 189eqtrd 2858 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝐺𝑛)‘𝑦) = ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))))
191190fveq2d 6676 . 2 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝐺𝑛)‘𝑦)) = (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))))
192 breq2 5072 . . . . 5 (𝑚 = 𝑛 → ((2 · 𝑅) ≤ 𝑚 ↔ (2 · 𝑅) ≤ 𝑛))
193 oveq1 7165 . . . . . . 7 (𝑚 = 𝑛 → (𝑚↑2) = (𝑛↑2))
194193oveq2d 7174 . . . . . 6 (𝑚 = 𝑛 → ((2 · (𝑅 + 1)) / (𝑚↑2)) = ((2 · (𝑅 + 1)) / (𝑛↑2)))
195194oveq2d 7174 . . . . 5 (𝑚 = 𝑛 → (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
196169oveq2d 7174 . . . . . 6 (𝑚 = 𝑛 → (𝑅 · (log‘((𝑚 + 1) / 𝑚))) = (𝑅 · (log‘((𝑛 + 1) / 𝑛))))
197 oveq2 7166 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑅 + 1) · 𝑚) = ((𝑅 + 1) · 𝑛))
198197fveq2d 6676 . . . . . . 7 (𝑚 = 𝑛 → (log‘((𝑅 + 1) · 𝑚)) = (log‘((𝑅 + 1) · 𝑛)))
199198oveq1d 7173 . . . . . 6 (𝑚 = 𝑛 → ((log‘((𝑅 + 1) · 𝑚)) + π) = ((log‘((𝑅 + 1) · 𝑛)) + π))
200196, 199oveq12d 7176 . . . . 5 (𝑚 = 𝑛 → ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)) = ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))
201192, 195, 200ifbieq12d 4496 . . . 4 (𝑚 = 𝑛 → if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
202 lgamgulm.t . . . 4 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
203 ovex 7191 . . . . 5 (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) ∈ V
204 ovex 7191 . . . . 5 ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) ∈ V
205203, 204ifex 4517 . . . 4 if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) ∈ V
206201, 202, 205fvmpt 6770 . . 3 (𝑛 ∈ ℕ → (𝑇𝑛) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
207206ad2antrl 726 . 2 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑇𝑛) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
208165, 191, 2073brtr4d 5100 1 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝐺𝑛)‘𝑦)) ≤ (𝑇𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  {crab 3144  cdif 3935  wss 3938  ifcif 4469   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  cle 10678  cmin 10872  -cneg 10873   / cdiv 11299  cn 11640  2c2 11695  0cn0 11900  cz 11984  +crp 12392  cexp 13432  abscabs 14595  πcpi 15422  logclog 25140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-tan 15427  df-pi 15428  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467  df-log 25142
This theorem is referenced by:  lgamgulmlem6  25613
  Copyright terms: Public domain W3C validator