MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamucov Structured version   Visualization version   GIF version

Theorem lgamucov 25617
Description: The 𝑈 regions used in the proof of lgamgulm 25614 have interiors which cover the entire domain of the Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017.)
Hypotheses
Ref Expression
lgamucov.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))}
lgamucov.a (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
lgamucov.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
lgamucov (𝜑 → ∃𝑟 ∈ ℕ 𝐴 ∈ ((int‘𝐽)‘𝑈))
Distinct variable groups:   𝑘,𝑟,𝑥,𝐴   𝜑,𝑘,𝑟,𝑥
Allowed substitution hints:   𝑈(𝑥,𝑘,𝑟)   𝐽(𝑥,𝑘,𝑟)

Proof of Theorem lgamucov
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 cnxmet 23383 . . 3 (abs ∘ − ) ∈ (∞Met‘ℂ)
2 difss 4110 . . . . 5 (ℤ ∖ ℕ) ⊆ ℤ
3 lgamucov.j . . . . . 6 𝐽 = (TopOpen‘ℂfld)
43sszcld 23427 . . . . 5 ((ℤ ∖ ℕ) ⊆ ℤ → (ℤ ∖ ℕ) ∈ (Clsd‘𝐽))
53cnfldtopon 23393 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
65toponunii 21526 . . . . . 6 ℂ = 𝐽
76cldopn 21641 . . . . 5 ((ℤ ∖ ℕ) ∈ (Clsd‘𝐽) → (ℂ ∖ (ℤ ∖ ℕ)) ∈ 𝐽)
82, 4, 7mp2b 10 . . . 4 (ℂ ∖ (ℤ ∖ ℕ)) ∈ 𝐽
98a1i 11 . . 3 (𝜑 → (ℂ ∖ (ℤ ∖ ℕ)) ∈ 𝐽)
10 lgamucov.a . . 3 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
113cnfldtopn 23392 . . . 4 𝐽 = (MetOpen‘(abs ∘ − ))
1211mopni2 23105 . . 3 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (ℂ ∖ (ℤ ∖ ℕ)) ∈ 𝐽𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) → ∃𝑎 ∈ ℝ+ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
131, 9, 10, 12mp3an2i 1462 . 2 (𝜑 → ∃𝑎 ∈ ℝ+ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
1410eldifad 3950 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1514adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → 𝐴 ∈ ℂ)
1615abscld 14798 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → (abs‘𝐴) ∈ ℝ)
17 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → 𝑎 ∈ ℝ+)
1817rpred 12434 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → 𝑎 ∈ ℝ)
1916, 18readdcld 10672 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → ((abs‘𝐴) + 𝑎) ∈ ℝ)
20 2re 11714 . . . . . . 7 2 ∈ ℝ
2120a1i 11 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → 2 ∈ ℝ)
2221, 17rerpdivcld 12465 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → (2 / 𝑎) ∈ ℝ)
2319, 22readdcld 10672 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) ∈ ℝ)
24 arch 11897 . . . 4 ((((abs‘𝐴) + 𝑎) + (2 / 𝑎)) ∈ ℝ → ∃𝑟 ∈ ℕ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟)
2523, 24syl 17 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → ∃𝑟 ∈ ℕ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟)
263cnfldtop 23394 . . . . . . . 8 𝐽 ∈ Top
2726a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → 𝐽 ∈ Top)
28 lgamucov.u . . . . . . . . 9 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))}
2928ssrab3 4059 . . . . . . . 8 𝑈 ⊆ ℂ
3029a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → 𝑈 ⊆ ℂ)
3115ad2antrr 724 . . . . . . . 8 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → 𝐴 ∈ ℂ)
3217ad2antrr 724 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → 𝑎 ∈ ℝ+)
3332rphalfcld 12446 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → (𝑎 / 2) ∈ ℝ+)
3433rpxrd 12435 . . . . . . . 8 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → (𝑎 / 2) ∈ ℝ*)
3511blopn 23112 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ (𝑎 / 2) ∈ ℝ*) → (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) ∈ 𝐽)
361, 31, 34, 35mp3an2i 1462 . . . . . . 7 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) ∈ 𝐽)
37 simplr 767 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → 𝑥 ∈ ℂ)
3837abscld 14798 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘𝑥) ∈ ℝ)
39 simp-4r 782 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → 𝑟 ∈ ℕ)
4039nnred 11655 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → 𝑟 ∈ ℝ)
4123ad4antr 730 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) ∈ ℝ)
4219ad4antr 730 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ((abs‘𝐴) + 𝑎) ∈ ℝ)
4316ad4antr 730 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘𝐴) ∈ ℝ)
4438, 43resubcld 11070 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ((abs‘𝑥) − (abs‘𝐴)) ∈ ℝ)
4518ad4antr 730 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → 𝑎 ∈ ℝ)
4645rehalfcld 11887 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (𝑎 / 2) ∈ ℝ)
4731ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → 𝐴 ∈ ℂ)
4837, 47subcld 10999 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (𝑥𝐴) ∈ ℂ)
4948abscld 14798 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘(𝑥𝐴)) ∈ ℝ)
5037, 47abs2difd 14819 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ((abs‘𝑥) − (abs‘𝐴)) ≤ (abs‘(𝑥𝐴)))
51 eqid 2823 . . . . . . . . . . . . . . . . . . . . 21 (abs ∘ − ) = (abs ∘ − )
5251cnmetdval 23381 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴(abs ∘ − )𝑥) = (abs‘(𝐴𝑥)))
5347, 37, 52syl2anc 586 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (𝐴(abs ∘ − )𝑥) = (abs‘(𝐴𝑥)))
5447, 37abssubd 14815 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘(𝐴𝑥)) = (abs‘(𝑥𝐴)))
5553, 54eqtrd 2858 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (𝐴(abs ∘ − )𝑥) = (abs‘(𝑥𝐴)))
56 simpr 487 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (𝐴(abs ∘ − )𝑥) < (𝑎 / 2))
5755, 56eqbrtrrd 5092 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘(𝑥𝐴)) < (𝑎 / 2))
5844, 49, 46, 50, 57lelttrd 10800 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ((abs‘𝑥) − (abs‘𝐴)) < (𝑎 / 2))
5932ad2antrr 724 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → 𝑎 ∈ ℝ+)
60 rphalflt 12421 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℝ+ → (𝑎 / 2) < 𝑎)
6159, 60syl 17 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (𝑎 / 2) < 𝑎)
6244, 46, 45, 58, 61lttrd 10803 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ((abs‘𝑥) − (abs‘𝐴)) < 𝑎)
6338, 43, 45ltsubadd2d 11240 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (((abs‘𝑥) − (abs‘𝐴)) < 𝑎 ↔ (abs‘𝑥) < ((abs‘𝐴) + 𝑎)))
6462, 63mpbid 234 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘𝑥) < ((abs‘𝐴) + 𝑎))
65 2rp 12397 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
6665a1i 11 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → 2 ∈ ℝ+)
6766, 59rpdivcld 12451 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (2 / 𝑎) ∈ ℝ+)
6842, 67ltaddrpd 12467 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ((abs‘𝐴) + 𝑎) < (((abs‘𝐴) + 𝑎) + (2 / 𝑎)))
6938, 42, 41, 64, 68lttrd 10803 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘𝑥) < (((abs‘𝐴) + 𝑎) + (2 / 𝑎)))
70 simpllr 774 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟)
7138, 41, 40, 69, 70lttrd 10803 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘𝑥) < 𝑟)
7238, 40, 71ltled 10790 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘𝑥) ≤ 𝑟)
7339adantr 483 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑟 ∈ ℕ)
7473nnrecred 11691 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (1 / 𝑟) ∈ ℝ)
75 simpllr 774 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑥 ∈ ℂ)
76 simpr 487 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
7776nn0cnd 11960 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
7875, 77addcld 10662 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑥 + 𝑘) ∈ ℂ)
7978abscld 14798 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (abs‘(𝑥 + 𝑘)) ∈ ℝ)
8046adantr 483 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑎 / 2) ∈ ℝ)
8122ad5antr 732 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (2 / 𝑎) ∈ ℝ)
8241adantr 483 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) ∈ ℝ)
8340adantr 483 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑟 ∈ ℝ)
8447adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
8510ad6antr 734 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
8685dmgmn0 25605 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ≠ 0)
8784, 86absrpcld 14810 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ+)
8859adantr 483 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑎 ∈ ℝ+)
8987, 88rpaddcld 12449 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴) + 𝑎) ∈ ℝ+)
9081, 89ltaddrp2d 12468 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (2 / 𝑎) < (((abs‘𝐴) + 𝑎) + (2 / 𝑎)))
91 simp-4r 782 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟)
9281, 82, 83, 90, 91lttrd 10803 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (2 / 𝑎) < 𝑟)
9367adantr 483 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (2 / 𝑎) ∈ ℝ+)
9473nnrpd 12432 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑟 ∈ ℝ+)
9593, 94ltrecd 12452 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → ((2 / 𝑎) < 𝑟 ↔ (1 / 𝑟) < (1 / (2 / 𝑎))))
9692, 95mpbid 234 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (1 / 𝑟) < (1 / (2 / 𝑎)))
97 2cnd 11718 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 2 ∈ ℂ)
9888rpcnd 12436 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑎 ∈ ℂ)
99 2ne0 11744 . . . . . . . . . . . . . . . . 17 2 ≠ 0
10099a1i 11 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 2 ≠ 0)
10188rpne0d 12439 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑎 ≠ 0)
10297, 98, 100, 101recdivd 11435 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (1 / (2 / 𝑎)) = (𝑎 / 2))
10396, 102breqtrd 5094 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (1 / 𝑟) < (𝑎 / 2))
104 eldmgm 25601 . . . . . . . . . . . . . . . . 17 (-𝑘 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (-𝑘 ∈ ℂ ∧ ¬ --𝑘 ∈ ℕ0))
105104simprbi 499 . . . . . . . . . . . . . . . 16 (-𝑘 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → ¬ --𝑘 ∈ ℕ0)
10677negnegd 10990 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → --𝑘 = 𝑘)
107106, 76eqeltrd 2915 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → --𝑘 ∈ ℕ0)
108105, 107nsyl3 140 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → ¬ -𝑘 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
1091a1i 11 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (abs ∘ − ) ∈ (∞Met‘ℂ))
11034ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑎 / 2) ∈ ℝ*)
11177negcld 10986 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → -𝑘 ∈ ℂ)
112 elbl2 23002 . . . . . . . . . . . . . . . . . 18 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑥 ∈ ℂ ∧ -𝑘 ∈ ℂ)) → (-𝑘 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ↔ (𝑥(abs ∘ − )-𝑘) < (𝑎 / 2)))
113109, 110, 75, 111, 112syl22anc 836 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (-𝑘 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ↔ (𝑥(abs ∘ − )-𝑘) < (𝑎 / 2)))
11451cnmetdval 23381 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℂ ∧ -𝑘 ∈ ℂ) → (𝑥(abs ∘ − )-𝑘) = (abs‘(𝑥 − -𝑘)))
11575, 111, 114syl2anc 586 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑥(abs ∘ − )-𝑘) = (abs‘(𝑥 − -𝑘)))
11675, 77subnegd 11006 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑥 − -𝑘) = (𝑥 + 𝑘))
117116fveq2d 6676 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (abs‘(𝑥 − -𝑘)) = (abs‘(𝑥 + 𝑘)))
118115, 117eqtrd 2858 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑥(abs ∘ − )-𝑘) = (abs‘(𝑥 + 𝑘)))
119118breq1d 5078 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → ((𝑥(abs ∘ − )-𝑘) < (𝑎 / 2) ↔ (abs‘(𝑥 + 𝑘)) < (𝑎 / 2)))
12079, 80ltnled 10789 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → ((abs‘(𝑥 + 𝑘)) < (𝑎 / 2) ↔ ¬ (𝑎 / 2) ≤ (abs‘(𝑥 + 𝑘))))
121113, 119, 1203bitrd 307 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (-𝑘 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ↔ ¬ (𝑎 / 2) ≤ (abs‘(𝑥 + 𝑘))))
12245adantr 483 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑎 ∈ ℝ)
123 simplr 767 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝐴(abs ∘ − )𝑥) < (𝑎 / 2))
124 elbl3 23004 . . . . . . . . . . . . . . . . . . . . 21 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ)) → (𝐴 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ↔ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)))
125109, 110, 75, 84, 124syl22anc 836 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝐴 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ↔ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)))
126123, 125mpbird 259 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)))
127 blhalf 23017 . . . . . . . . . . . . . . . . . . 19 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ) ∧ (𝑎 ∈ ℝ ∧ 𝐴 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)))) → (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ⊆ (𝐴(ball‘(abs ∘ − ))𝑎))
128109, 75, 122, 126, 127syl22anc 836 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ⊆ (𝐴(ball‘(abs ∘ − ))𝑎))
129 simprr 771 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
130129ad5antr 732 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
131128, 130sstrd 3979 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
132131sseld 3968 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (-𝑘 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) → -𝑘 ∈ (ℂ ∖ (ℤ ∖ ℕ))))
133121, 132sylbird 262 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (¬ (𝑎 / 2) ≤ (abs‘(𝑥 + 𝑘)) → -𝑘 ∈ (ℂ ∖ (ℤ ∖ ℕ))))
134108, 133mt3d 150 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑎 / 2) ≤ (abs‘(𝑥 + 𝑘)))
13574, 80, 79, 103, 134ltletrd 10802 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (1 / 𝑟) < (abs‘(𝑥 + 𝑘)))
13674, 79, 135ltled 10790 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))
137136ralrimiva 3184 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))
13872, 137jca 514 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘))))
139138ex 415 . . . . . . . . 9 (((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) → ((𝐴(abs ∘ − )𝑥) < (𝑎 / 2) → ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))))
140139ss2rabdv 4054 . . . . . . . 8 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → {𝑥 ∈ ℂ ∣ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)} ⊆ {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))})
141 blval 22998 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ (𝑎 / 2) ∈ ℝ*) → (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) = {𝑥 ∈ ℂ ∣ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)})
1421, 31, 34, 141mp3an2i 1462 . . . . . . . 8 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) = {𝑥 ∈ ℂ ∣ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)})
14328a1i 11 . . . . . . . 8 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))})
144140, 142, 1433sstr4d 4016 . . . . . . 7 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) ⊆ 𝑈)
1456ssntr 21668 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑈 ⊆ ℂ) ∧ ((𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) ∈ 𝐽 ∧ (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) ⊆ 𝑈)) → (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) ⊆ ((int‘𝐽)‘𝑈))
14627, 30, 36, 144, 145syl22anc 836 . . . . . 6 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) ⊆ ((int‘𝐽)‘𝑈))
147 blcntr 23025 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ (𝑎 / 2) ∈ ℝ+) → 𝐴 ∈ (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)))
1481, 31, 33, 147mp3an2i 1462 . . . . . 6 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → 𝐴 ∈ (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)))
149146, 148sseldd 3970 . . . . 5 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → 𝐴 ∈ ((int‘𝐽)‘𝑈))
150149ex 415 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) → ((((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟𝐴 ∈ ((int‘𝐽)‘𝑈)))
151150reximdva 3276 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → (∃𝑟 ∈ ℕ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟 → ∃𝑟 ∈ ℕ 𝐴 ∈ ((int‘𝐽)‘𝑈)))
15225, 151mpd 15 . 2 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → ∃𝑟 ∈ ℕ 𝐴 ∈ ((int‘𝐽)‘𝑈))
15313, 152rexlimddv 3293 1 (𝜑 → ∃𝑟 ∈ ℕ 𝐴 ∈ ((int‘𝐽)‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  {crab 3144  cdif 3935  wss 3938   class class class wbr 5068  ccom 5561  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542  *cxr 10676   < clt 10677  cle 10678  cmin 10872  -cneg 10873   / cdiv 11299  cn 11640  2c2 11695  0cn0 11900  cz 11984  +crp 12392  abscabs 14595  TopOpenctopn 16697  ∞Metcxmet 20532  ballcbl 20534  fldccnfld 20547  Topctop 21503  Clsdccld 21626  intcnt 21627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fi 8877  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-fz 12896  df-fl 13165  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-plusg 16580  df-mulr 16581  df-starv 16582  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-rest 16698  df-topn 16699  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-xms 22932  df-ms 22933
This theorem is referenced by:  lgamucov2  25618
  Copyright terms: Public domain W3C validator