MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamucov2 Structured version   Visualization version   GIF version

Theorem lgamucov2 24672
Description: The 𝑈 regions used in the proof of lgamgulm 24668 have interiors which cover the entire domain of the Gamma function. (Contributed by Mario Carneiro, 8-Jul-2017.)
Hypotheses
Ref Expression
lgamucov.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))}
lgamucov.a (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
Assertion
Ref Expression
lgamucov2 (𝜑 → ∃𝑟 ∈ ℕ 𝐴𝑈)
Distinct variable groups:   𝑘,𝑟,𝑥,𝐴   𝜑,𝑘,𝑟,𝑥
Allowed substitution hints:   𝑈(𝑥,𝑘,𝑟)

Proof of Theorem lgamucov2
StepHypRef Expression
1 lgamucov.u . . 3 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))}
2 lgamucov.a . . 3 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
3 eqid 2621 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
41, 2, 3lgamucov 24671 . 2 (𝜑 → ∃𝑟 ∈ ℕ 𝐴 ∈ ((int‘(TopOpen‘ℂfld))‘𝑈))
53cnfldtop 22500 . . . . 5 (TopOpen‘ℂfld) ∈ Top
6 ssrab2 3668 . . . . . 6 {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))} ⊆ ℂ
71, 6eqsstri 3616 . . . . 5 𝑈 ⊆ ℂ
83cnfldtopon 22499 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
98toponunii 20646 . . . . . 6 ℂ = (TopOpen‘ℂfld)
109ntrss2 20774 . . . . 5 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑈 ⊆ ℂ) → ((int‘(TopOpen‘ℂfld))‘𝑈) ⊆ 𝑈)
115, 7, 10mp2an 707 . . . 4 ((int‘(TopOpen‘ℂfld))‘𝑈) ⊆ 𝑈
1211sseli 3580 . . 3 (𝐴 ∈ ((int‘(TopOpen‘ℂfld))‘𝑈) → 𝐴𝑈)
1312reximi 3005 . 2 (∃𝑟 ∈ ℕ 𝐴 ∈ ((int‘(TopOpen‘ℂfld))‘𝑈) → ∃𝑟 ∈ ℕ 𝐴𝑈)
144, 13syl 17 1 (𝜑 → ∃𝑟 ∈ ℕ 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  {crab 2911  cdif 3553  wss 3556   class class class wbr 4615  cfv 5849  (class class class)co 6607  cc 9881  1c1 9884   + caddc 9886  cle 10022   / cdiv 10631  cn 10967  0cn0 11239  cz 11324  abscabs 13911  TopOpenctopn 16006  fldccnfld 19668  Topctop 20620  intcnt 20734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-iin 4490  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-oadd 7512  df-er 7690  df-map 7807  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-fi 8264  df-sup 8295  df-inf 8296  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-z 11325  df-dec 11441  df-uz 11635  df-q 11736  df-rp 11780  df-xneg 11893  df-xadd 11894  df-xmul 11895  df-ioo 12124  df-fz 12272  df-fl 12536  df-seq 12745  df-exp 12804  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913  df-struct 15786  df-ndx 15787  df-slot 15788  df-base 15789  df-plusg 15878  df-mulr 15879  df-starv 15880  df-tset 15884  df-ple 15885  df-ds 15888  df-unif 15889  df-rest 16007  df-topn 16008  df-topgen 16028  df-psmet 19660  df-xmet 19661  df-met 19662  df-bl 19663  df-mopn 19664  df-cnfld 19669  df-top 20621  df-topon 20638  df-topsp 20651  df-bases 20664  df-cld 20736  df-ntr 20737  df-xms 22038  df-ms 22039
This theorem is referenced by:  lgamcvglem  24673
  Copyright terms: Public domain W3C validator