Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdchrval Structured version   Visualization version   GIF version

Theorem lgsdchrval 24992
 Description: The Legendre symbol function 𝑋(𝑚) = (𝑚 /L 𝑁), where 𝑁 is an odd positive number, is a Dirichlet character modulo 𝑁. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
lgsdchr.g 𝐺 = (DChr‘𝑁)
lgsdchr.z 𝑍 = (ℤ/nℤ‘𝑁)
lgsdchr.d 𝐷 = (Base‘𝐺)
lgsdchr.b 𝐵 = (Base‘𝑍)
lgsdchr.l 𝐿 = (ℤRHom‘𝑍)
lgsdchr.x 𝑋 = (𝑦𝐵 ↦ (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
Assertion
Ref Expression
lgsdchrval (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → (𝑋‘(𝐿𝐴)) = (𝐴 /L 𝑁))
Distinct variable groups:   𝑦,𝐵   ,𝑚,𝑦,𝐿   ,𝑁,𝑚,𝑦   𝑦,𝑋   𝐴,,𝑚,𝑦   𝑦,𝑍
Allowed substitution hints:   𝐵(,𝑚)   𝐷(𝑦,,𝑚)   𝐺(𝑦,,𝑚)   𝑋(,𝑚)   𝑍(,𝑚)

Proof of Theorem lgsdchrval
StepHypRef Expression
1 nnnn0 11250 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
21adantr 481 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℕ0)
3 lgsdchr.z . . . . . 6 𝑍 = (ℤ/nℤ‘𝑁)
4 lgsdchr.b . . . . . 6 𝐵 = (Base‘𝑍)
5 lgsdchr.l . . . . . 6 𝐿 = (ℤRHom‘𝑍)
63, 4, 5znzrhfo 19824 . . . . 5 (𝑁 ∈ ℕ0𝐿:ℤ–onto𝐵)
7 fof 6077 . . . . 5 (𝐿:ℤ–onto𝐵𝐿:ℤ⟶𝐵)
82, 6, 73syl 18 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝐿:ℤ⟶𝐵)
98ffvelrnda 6320 . . 3 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → (𝐿𝐴) ∈ 𝐵)
10 eqeq1 2625 . . . . . . 7 (𝑦 = (𝐿𝐴) → (𝑦 = (𝐿𝑚) ↔ (𝐿𝐴) = (𝐿𝑚)))
1110anbi1d 740 . . . . . 6 (𝑦 = (𝐿𝐴) → ((𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)) ↔ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
1211rexbidv 3046 . . . . 5 (𝑦 = (𝐿𝐴) → (∃𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)) ↔ ∃𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
1312iotabidv 5836 . . . 4 (𝑦 = (𝐿𝐴) → (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))) = (℩𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
14 lgsdchr.x . . . 4 𝑋 = (𝑦𝐵 ↦ (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
15 iotaex 5832 . . . 4 (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))) ∈ V
1613, 14, 15fvmpt3i 6249 . . 3 ((𝐿𝐴) ∈ 𝐵 → (𝑋‘(𝐿𝐴)) = (℩𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
179, 16syl 17 . 2 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → (𝑋‘(𝐿𝐴)) = (℩𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
18 ovex 6638 . . 3 (𝐴 /L 𝑁) ∈ V
19 simprr 795 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → (𝐿𝐴) = (𝐿𝑚))
20 simplll 797 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → 𝑁 ∈ ℕ)
2120, 1syl 17 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → 𝑁 ∈ ℕ0)
22 simplr 791 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → 𝐴 ∈ ℤ)
23 simprl 793 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → 𝑚 ∈ ℤ)
243, 5zndvds 19826 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝐿𝐴) = (𝐿𝑚) ↔ 𝑁 ∥ (𝐴𝑚)))
2521, 22, 23, 24syl3anc 1323 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ((𝐿𝐴) = (𝐿𝑚) ↔ 𝑁 ∥ (𝐴𝑚)))
2619, 25mpbid 222 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → 𝑁 ∥ (𝐴𝑚))
27 moddvds 14922 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝐴 mod 𝑁) = (𝑚 mod 𝑁) ↔ 𝑁 ∥ (𝐴𝑚)))
2820, 22, 23, 27syl3anc 1323 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ((𝐴 mod 𝑁) = (𝑚 mod 𝑁) ↔ 𝑁 ∥ (𝐴𝑚)))
2926, 28mpbird 247 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → (𝐴 mod 𝑁) = (𝑚 mod 𝑁))
3029oveq1d 6625 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ((𝐴 mod 𝑁) /L 𝑁) = ((𝑚 mod 𝑁) /L 𝑁))
31 simpllr 798 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ¬ 2 ∥ 𝑁)
32 lgsmod 24961 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (𝐴 /L 𝑁))
3322, 20, 31, 32syl3anc 1323 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ((𝐴 mod 𝑁) /L 𝑁) = (𝐴 /L 𝑁))
34 lgsmod 24961 . . . . . . . . . . . . 13 ((𝑚 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝑚 mod 𝑁) /L 𝑁) = (𝑚 /L 𝑁))
3523, 20, 31, 34syl3anc 1323 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ((𝑚 mod 𝑁) /L 𝑁) = (𝑚 /L 𝑁))
3630, 33, 353eqtr3d 2663 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → (𝐴 /L 𝑁) = (𝑚 /L 𝑁))
3736eqeq2d 2631 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ( = (𝐴 /L 𝑁) ↔ = (𝑚 /L 𝑁)))
3837biimprd 238 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ( = (𝑚 /L 𝑁) → = (𝐴 /L 𝑁)))
3938anassrs 679 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ 𝑚 ∈ ℤ) ∧ (𝐿𝐴) = (𝐿𝑚)) → ( = (𝑚 /L 𝑁) → = (𝐴 /L 𝑁)))
4039expimpd 628 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)) → = (𝐴 /L 𝑁)))
4140rexlimdva 3025 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → (∃𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)) → = (𝐴 /L 𝑁)))
42 fveq2 6153 . . . . . . . . . . . 12 (𝑚 = 𝐴 → (𝐿𝑚) = (𝐿𝐴))
4342eqcomd 2627 . . . . . . . . . . 11 (𝑚 = 𝐴 → (𝐿𝐴) = (𝐿𝑚))
4443biantrurd 529 . . . . . . . . . 10 (𝑚 = 𝐴 → ( = (𝑚 /L 𝑁) ↔ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
45 oveq1 6617 . . . . . . . . . . 11 (𝑚 = 𝐴 → (𝑚 /L 𝑁) = (𝐴 /L 𝑁))
4645eqeq2d 2631 . . . . . . . . . 10 (𝑚 = 𝐴 → ( = (𝑚 /L 𝑁) ↔ = (𝐴 /L 𝑁)))
4744, 46bitr3d 270 . . . . . . . . 9 (𝑚 = 𝐴 → (((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)) ↔ = (𝐴 /L 𝑁)))
4847rspcev 3298 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ = (𝐴 /L 𝑁)) → ∃𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)))
4948ex 450 . . . . . . 7 (𝐴 ∈ ℤ → ( = (𝐴 /L 𝑁) → ∃𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
5049adantl 482 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → ( = (𝐴 /L 𝑁) → ∃𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
5141, 50impbid 202 . . . . 5 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → (∃𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)) ↔ = (𝐴 /L 𝑁)))
5251adantr 481 . . . 4 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝐴 /L 𝑁) ∈ V) → (∃𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)) ↔ = (𝐴 /L 𝑁)))
5352iota5 5835 . . 3 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝐴 /L 𝑁) ∈ V) → (℩𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))) = (𝐴 /L 𝑁))
5418, 53mpan2 706 . 2 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → (℩𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))) = (𝐴 /L 𝑁))
5517, 54eqtrd 2655 1 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → (𝑋‘(𝐿𝐴)) = (𝐴 /L 𝑁))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∃wrex 2908  Vcvv 3189   class class class wbr 4618   ↦ cmpt 4678  ℩cio 5813  ⟶wf 5848  –onto→wfo 5850  ‘cfv 5852  (class class class)co 6610   − cmin 10217  ℕcn 10971  2c2 11021  ℕ0cn0 11243  ℤcz 11328   mod cmo 12615   ∥ cdvds 14914  Basecbs 15788  ℤRHomczrh 19776  ℤ/nℤczn 19779  DChrcdchr 24870   /L clgs 24932 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965  ax-addf 9966  ax-mulf 9967 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-tpos 7304  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-ec 7696  df-qs 7700  df-map 7811  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-sup 8299  df-inf 8300  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-xnn0 11315  df-z 11329  df-dec 11445  df-uz 11639  df-q 11740  df-rp 11784  df-fz 12276  df-fzo 12414  df-fl 12540  df-mod 12616  df-seq 12749  df-exp 12808  df-hash 13065  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-dvds 14915  df-gcd 15148  df-prm 15317  df-phi 15402  df-pc 15473  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-starv 15884  df-sca 15885  df-vsca 15886  df-ip 15887  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-0g 16030  df-imas 16096  df-qus 16097  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-mhm 17263  df-grp 17353  df-minusg 17354  df-sbg 17355  df-mulg 17469  df-subg 17519  df-nsg 17520  df-eqg 17521  df-ghm 17586  df-cmn 18123  df-abl 18124  df-mgp 18418  df-ur 18430  df-ring 18477  df-cring 18478  df-oppr 18551  df-dvdsr 18569  df-rnghom 18643  df-subrg 18706  df-lmod 18793  df-lss 18861  df-lsp 18900  df-sra 19100  df-rgmod 19101  df-lidl 19102  df-rsp 19103  df-2idl 19160  df-cnfld 19675  df-zring 19747  df-zrh 19780  df-zn 19783  df-lgs 24933 This theorem is referenced by:  lgsdchr  24993
 Copyright terms: Public domain W3C validator