MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdchrval Structured version   Visualization version   GIF version

Theorem lgsdchrval 24992
Description: The Legendre symbol function 𝑋(𝑚) = (𝑚 /L 𝑁), where 𝑁 is an odd positive number, is a Dirichlet character modulo 𝑁. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
lgsdchr.g 𝐺 = (DChr‘𝑁)
lgsdchr.z 𝑍 = (ℤ/nℤ‘𝑁)
lgsdchr.d 𝐷 = (Base‘𝐺)
lgsdchr.b 𝐵 = (Base‘𝑍)
lgsdchr.l 𝐿 = (ℤRHom‘𝑍)
lgsdchr.x 𝑋 = (𝑦𝐵 ↦ (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
Assertion
Ref Expression
lgsdchrval (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → (𝑋‘(𝐿𝐴)) = (𝐴 /L 𝑁))
Distinct variable groups:   𝑦,𝐵   ,𝑚,𝑦,𝐿   ,𝑁,𝑚,𝑦   𝑦,𝑋   𝐴,,𝑚,𝑦   𝑦,𝑍
Allowed substitution hints:   𝐵(,𝑚)   𝐷(𝑦,,𝑚)   𝐺(𝑦,,𝑚)   𝑋(,𝑚)   𝑍(,𝑚)

Proof of Theorem lgsdchrval
StepHypRef Expression
1 nnnn0 11250 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
21adantr 481 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℕ0)
3 lgsdchr.z . . . . . 6 𝑍 = (ℤ/nℤ‘𝑁)
4 lgsdchr.b . . . . . 6 𝐵 = (Base‘𝑍)
5 lgsdchr.l . . . . . 6 𝐿 = (ℤRHom‘𝑍)
63, 4, 5znzrhfo 19824 . . . . 5 (𝑁 ∈ ℕ0𝐿:ℤ–onto𝐵)
7 fof 6077 . . . . 5 (𝐿:ℤ–onto𝐵𝐿:ℤ⟶𝐵)
82, 6, 73syl 18 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝐿:ℤ⟶𝐵)
98ffvelrnda 6320 . . 3 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → (𝐿𝐴) ∈ 𝐵)
10 eqeq1 2625 . . . . . . 7 (𝑦 = (𝐿𝐴) → (𝑦 = (𝐿𝑚) ↔ (𝐿𝐴) = (𝐿𝑚)))
1110anbi1d 740 . . . . . 6 (𝑦 = (𝐿𝐴) → ((𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)) ↔ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
1211rexbidv 3046 . . . . 5 (𝑦 = (𝐿𝐴) → (∃𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)) ↔ ∃𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
1312iotabidv 5836 . . . 4 (𝑦 = (𝐿𝐴) → (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))) = (℩𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
14 lgsdchr.x . . . 4 𝑋 = (𝑦𝐵 ↦ (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
15 iotaex 5832 . . . 4 (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))) ∈ V
1613, 14, 15fvmpt3i 6249 . . 3 ((𝐿𝐴) ∈ 𝐵 → (𝑋‘(𝐿𝐴)) = (℩𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
179, 16syl 17 . 2 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → (𝑋‘(𝐿𝐴)) = (℩𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
18 ovex 6638 . . 3 (𝐴 /L 𝑁) ∈ V
19 simprr 795 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → (𝐿𝐴) = (𝐿𝑚))
20 simplll 797 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → 𝑁 ∈ ℕ)
2120, 1syl 17 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → 𝑁 ∈ ℕ0)
22 simplr 791 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → 𝐴 ∈ ℤ)
23 simprl 793 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → 𝑚 ∈ ℤ)
243, 5zndvds 19826 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝐿𝐴) = (𝐿𝑚) ↔ 𝑁 ∥ (𝐴𝑚)))
2521, 22, 23, 24syl3anc 1323 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ((𝐿𝐴) = (𝐿𝑚) ↔ 𝑁 ∥ (𝐴𝑚)))
2619, 25mpbid 222 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → 𝑁 ∥ (𝐴𝑚))
27 moddvds 14922 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝐴 mod 𝑁) = (𝑚 mod 𝑁) ↔ 𝑁 ∥ (𝐴𝑚)))
2820, 22, 23, 27syl3anc 1323 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ((𝐴 mod 𝑁) = (𝑚 mod 𝑁) ↔ 𝑁 ∥ (𝐴𝑚)))
2926, 28mpbird 247 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → (𝐴 mod 𝑁) = (𝑚 mod 𝑁))
3029oveq1d 6625 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ((𝐴 mod 𝑁) /L 𝑁) = ((𝑚 mod 𝑁) /L 𝑁))
31 simpllr 798 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ¬ 2 ∥ 𝑁)
32 lgsmod 24961 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (𝐴 /L 𝑁))
3322, 20, 31, 32syl3anc 1323 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ((𝐴 mod 𝑁) /L 𝑁) = (𝐴 /L 𝑁))
34 lgsmod 24961 . . . . . . . . . . . . 13 ((𝑚 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝑚 mod 𝑁) /L 𝑁) = (𝑚 /L 𝑁))
3523, 20, 31, 34syl3anc 1323 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ((𝑚 mod 𝑁) /L 𝑁) = (𝑚 /L 𝑁))
3630, 33, 353eqtr3d 2663 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → (𝐴 /L 𝑁) = (𝑚 /L 𝑁))
3736eqeq2d 2631 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ( = (𝐴 /L 𝑁) ↔ = (𝑚 /L 𝑁)))
3837biimprd 238 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ( = (𝑚 /L 𝑁) → = (𝐴 /L 𝑁)))
3938anassrs 679 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ 𝑚 ∈ ℤ) ∧ (𝐿𝐴) = (𝐿𝑚)) → ( = (𝑚 /L 𝑁) → = (𝐴 /L 𝑁)))
4039expimpd 628 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)) → = (𝐴 /L 𝑁)))
4140rexlimdva 3025 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → (∃𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)) → = (𝐴 /L 𝑁)))
42 fveq2 6153 . . . . . . . . . . . 12 (𝑚 = 𝐴 → (𝐿𝑚) = (𝐿𝐴))
4342eqcomd 2627 . . . . . . . . . . 11 (𝑚 = 𝐴 → (𝐿𝐴) = (𝐿𝑚))
4443biantrurd 529 . . . . . . . . . 10 (𝑚 = 𝐴 → ( = (𝑚 /L 𝑁) ↔ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
45 oveq1 6617 . . . . . . . . . . 11 (𝑚 = 𝐴 → (𝑚 /L 𝑁) = (𝐴 /L 𝑁))
4645eqeq2d 2631 . . . . . . . . . 10 (𝑚 = 𝐴 → ( = (𝑚 /L 𝑁) ↔ = (𝐴 /L 𝑁)))
4744, 46bitr3d 270 . . . . . . . . 9 (𝑚 = 𝐴 → (((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)) ↔ = (𝐴 /L 𝑁)))
4847rspcev 3298 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ = (𝐴 /L 𝑁)) → ∃𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)))
4948ex 450 . . . . . . 7 (𝐴 ∈ ℤ → ( = (𝐴 /L 𝑁) → ∃𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
5049adantl 482 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → ( = (𝐴 /L 𝑁) → ∃𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
5141, 50impbid 202 . . . . 5 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → (∃𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)) ↔ = (𝐴 /L 𝑁)))
5251adantr 481 . . . 4 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝐴 /L 𝑁) ∈ V) → (∃𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)) ↔ = (𝐴 /L 𝑁)))
5352iota5 5835 . . 3 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝐴 /L 𝑁) ∈ V) → (℩𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))) = (𝐴 /L 𝑁))
5418, 53mpan2 706 . 2 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → (℩𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))) = (𝐴 /L 𝑁))
5517, 54eqtrd 2655 1 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → (𝑋‘(𝐿𝐴)) = (𝐴 /L 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wrex 2908  Vcvv 3189   class class class wbr 4618  cmpt 4678  cio 5813  wf 5848  ontowfo 5850  cfv 5852  (class class class)co 6610  cmin 10217  cn 10971  2c2 11021  0cn0 11243  cz 11328   mod cmo 12615  cdvds 14914  Basecbs 15788  ℤRHomczrh 19776  ℤ/nczn 19779  DChrcdchr 24870   /L clgs 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965  ax-addf 9966  ax-mulf 9967
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-tpos 7304  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-ec 7696  df-qs 7700  df-map 7811  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-sup 8299  df-inf 8300  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-xnn0 11315  df-z 11329  df-dec 11445  df-uz 11639  df-q 11740  df-rp 11784  df-fz 12276  df-fzo 12414  df-fl 12540  df-mod 12616  df-seq 12749  df-exp 12808  df-hash 13065  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-dvds 14915  df-gcd 15148  df-prm 15317  df-phi 15402  df-pc 15473  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-starv 15884  df-sca 15885  df-vsca 15886  df-ip 15887  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-0g 16030  df-imas 16096  df-qus 16097  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-mhm 17263  df-grp 17353  df-minusg 17354  df-sbg 17355  df-mulg 17469  df-subg 17519  df-nsg 17520  df-eqg 17521  df-ghm 17586  df-cmn 18123  df-abl 18124  df-mgp 18418  df-ur 18430  df-ring 18477  df-cring 18478  df-oppr 18551  df-dvdsr 18569  df-rnghom 18643  df-subrg 18706  df-lmod 18793  df-lss 18861  df-lsp 18900  df-sra 19100  df-rgmod 19101  df-lidl 19102  df-rsp 19103  df-2idl 19160  df-cnfld 19675  df-zring 19747  df-zrh 19780  df-zn 19783  df-lgs 24933
This theorem is referenced by:  lgsdchr  24993
  Copyright terms: Public domain W3C validator