Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsfcl2 Structured version   Visualization version   GIF version

Theorem lgsfcl2 25219
 Description: The function 𝐹 is closed in integers with absolute value less than 1 (namely {-1, 0, 1}, see zabsle1 25212). (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsval.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
lgsfcl2.z 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
Assertion
Ref Expression
lgsfcl2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍)
Distinct variable groups:   𝑥,𝑛,𝐴   𝑥,𝐹   𝑛,𝑁,𝑥   𝑛,𝑍
Allowed substitution hints:   𝐹(𝑛)   𝑍(𝑥)

Proof of Theorem lgsfcl2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 11572 . . . . . . . 8 0 ∈ ℤ
2 0le1 10735 . . . . . . . 8 0 ≤ 1
3 fveq2 6344 . . . . . . . . . . 11 (𝑥 = 0 → (abs‘𝑥) = (abs‘0))
4 abs0 14216 . . . . . . . . . . 11 (abs‘0) = 0
53, 4syl6eq 2802 . . . . . . . . . 10 (𝑥 = 0 → (abs‘𝑥) = 0)
65breq1d 4806 . . . . . . . . 9 (𝑥 = 0 → ((abs‘𝑥) ≤ 1 ↔ 0 ≤ 1))
7 lgsfcl2.z . . . . . . . . 9 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
86, 7elrab2 3499 . . . . . . . 8 (0 ∈ 𝑍 ↔ (0 ∈ ℤ ∧ 0 ≤ 1))
91, 2, 8mpbir2an 993 . . . . . . 7 0 ∈ 𝑍
10 1z 11591 . . . . . . . . 9 1 ∈ ℤ
11 1le1 10839 . . . . . . . . 9 1 ≤ 1
12 fveq2 6344 . . . . . . . . . . . 12 (𝑥 = 1 → (abs‘𝑥) = (abs‘1))
13 abs1 14228 . . . . . . . . . . . 12 (abs‘1) = 1
1412, 13syl6eq 2802 . . . . . . . . . . 11 (𝑥 = 1 → (abs‘𝑥) = 1)
1514breq1d 4806 . . . . . . . . . 10 (𝑥 = 1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1))
1615, 7elrab2 3499 . . . . . . . . 9 (1 ∈ 𝑍 ↔ (1 ∈ ℤ ∧ 1 ≤ 1))
1710, 11, 16mpbir2an 993 . . . . . . . 8 1 ∈ 𝑍
18 neg1z 11597 . . . . . . . . 9 -1 ∈ ℤ
19 fveq2 6344 . . . . . . . . . . . 12 (𝑥 = -1 → (abs‘𝑥) = (abs‘-1))
20 ax-1cn 10178 . . . . . . . . . . . . . 14 1 ∈ ℂ
2120absnegi 14330 . . . . . . . . . . . . 13 (abs‘-1) = (abs‘1)
2221, 13eqtri 2774 . . . . . . . . . . . 12 (abs‘-1) = 1
2319, 22syl6eq 2802 . . . . . . . . . . 11 (𝑥 = -1 → (abs‘𝑥) = 1)
2423breq1d 4806 . . . . . . . . . 10 (𝑥 = -1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1))
2524, 7elrab2 3499 . . . . . . . . 9 (-1 ∈ 𝑍 ↔ (-1 ∈ ℤ ∧ 1 ≤ 1))
2618, 11, 25mpbir2an 993 . . . . . . . 8 -1 ∈ 𝑍
2717, 26keepel 4291 . . . . . . 7 if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ∈ 𝑍
289, 27keepel 4291 . . . . . 6 if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ 𝑍
2928a1i 11 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ 𝑛 = 2) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ 𝑍)
30 simpl1 1225 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℤ)
3130ad2antrr 764 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → 𝐴 ∈ ℤ)
32 simplr 809 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → 𝑛 ∈ ℙ)
33 simpr 479 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → ¬ 𝑛 = 2)
3433neqned 2931 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → 𝑛 ≠ 2)
35 eldifsn 4454 . . . . . . 7 (𝑛 ∈ (ℙ ∖ {2}) ↔ (𝑛 ∈ ℙ ∧ 𝑛 ≠ 2))
3632, 34, 35sylanbrc 701 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → 𝑛 ∈ (ℙ ∖ {2}))
377lgslem4 25216 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) ∈ 𝑍)
3831, 36, 37syl2anc 696 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) ∈ 𝑍)
3929, 38ifclda 4256 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)) ∈ 𝑍)
40 simpr 479 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ ℙ)
41 simpll2 1254 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → 𝑁 ∈ ℤ)
42 simpll3 1256 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → 𝑁 ≠ 0)
43 pczcl 15747 . . . . 5 ((𝑛 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑛 pCnt 𝑁) ∈ ℕ0)
4440, 41, 42, 43syl12anc 1471 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑁) ∈ ℕ0)
45 ssrab2 3820 . . . . . . 7 {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⊆ ℤ
467, 45eqsstri 3768 . . . . . 6 𝑍 ⊆ ℤ
47 zsscn 11569 . . . . . 6 ℤ ⊆ ℂ
4846, 47sstri 3745 . . . . 5 𝑍 ⊆ ℂ
497lgslem3 25215 . . . . 5 ((𝑎𝑍𝑏𝑍) → (𝑎 · 𝑏) ∈ 𝑍)
5048, 49, 17expcllem 13057 . . . 4 ((if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)) ∈ 𝑍 ∧ (𝑛 pCnt 𝑁) ∈ ℕ0) → (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)) ∈ 𝑍)
5139, 44, 50syl2anc 696 . . 3 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)) ∈ 𝑍)
5217a1i 11 . . 3 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ ¬ 𝑛 ∈ ℙ) → 1 ∈ 𝑍)
5351, 52ifclda 4256 . 2 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) → if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1) ∈ 𝑍)
54 lgsval.1 . 2 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
5553, 54fmptd 6540 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1624   ∈ wcel 2131   ≠ wne 2924  {crab 3046   ∖ cdif 3704  ifcif 4222  {csn 4313  {cpr 4315   class class class wbr 4796   ↦ cmpt 4873  ⟶wf 6037  ‘cfv 6041  (class class class)co 6805  ℂcc 10118  0cc0 10120  1c1 10121   + caddc 10123   ≤ cle 10259   − cmin 10450  -cneg 10451   / cdiv 10868  ℕcn 11204  2c2 11254  7c7 11259  8c8 11260  ℕ0cn0 11476  ℤcz 11561   mod cmo 12854  ↑cexp 13046  abscabs 14165   ∥ cdvds 15174  ℙcprime 15579   pCnt cpc 15735 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-er 7903  df-map 8017  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8505  df-inf 8506  df-card 8947  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-xnn0 11548  df-z 11562  df-uz 11872  df-q 11974  df-rp 12018  df-fz 12512  df-fzo 12652  df-fl 12779  df-mod 12855  df-seq 12988  df-exp 13047  df-hash 13304  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-dvds 15175  df-gcd 15411  df-prm 15580  df-phi 15665  df-pc 15736 This theorem is referenced by:  lgscllem  25220  lgsfcl  25221  lgsfle1  25222
 Copyright terms: Public domain W3C validator