MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsfcl2 Structured version   Visualization version   GIF version

Theorem lgsfcl2 24928
Description: The function 𝐹 is closed in integers with absolute value less than 1 (namely {-1, 0, 1}, see zabsle1 24921). (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsval.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
lgsfcl2.z 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
Assertion
Ref Expression
lgsfcl2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍)
Distinct variable groups:   𝑥,𝑛,𝐴   𝑥,𝐹   𝑛,𝑁,𝑥   𝑛,𝑍
Allowed substitution hints:   𝐹(𝑛)   𝑍(𝑥)

Proof of Theorem lgsfcl2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 11332 . . . . . . . 8 0 ∈ ℤ
2 0le1 10495 . . . . . . . 8 0 ≤ 1
3 fveq2 6148 . . . . . . . . . . 11 (𝑥 = 0 → (abs‘𝑥) = (abs‘0))
4 abs0 13959 . . . . . . . . . . 11 (abs‘0) = 0
53, 4syl6eq 2671 . . . . . . . . . 10 (𝑥 = 0 → (abs‘𝑥) = 0)
65breq1d 4623 . . . . . . . . 9 (𝑥 = 0 → ((abs‘𝑥) ≤ 1 ↔ 0 ≤ 1))
7 lgsfcl2.z . . . . . . . . 9 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
86, 7elrab2 3348 . . . . . . . 8 (0 ∈ 𝑍 ↔ (0 ∈ ℤ ∧ 0 ≤ 1))
91, 2, 8mpbir2an 954 . . . . . . 7 0 ∈ 𝑍
10 1z 11351 . . . . . . . . 9 1 ∈ ℤ
11 1le1 10599 . . . . . . . . 9 1 ≤ 1
12 fveq2 6148 . . . . . . . . . . . 12 (𝑥 = 1 → (abs‘𝑥) = (abs‘1))
13 abs1 13971 . . . . . . . . . . . 12 (abs‘1) = 1
1412, 13syl6eq 2671 . . . . . . . . . . 11 (𝑥 = 1 → (abs‘𝑥) = 1)
1514breq1d 4623 . . . . . . . . . 10 (𝑥 = 1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1))
1615, 7elrab2 3348 . . . . . . . . 9 (1 ∈ 𝑍 ↔ (1 ∈ ℤ ∧ 1 ≤ 1))
1710, 11, 16mpbir2an 954 . . . . . . . 8 1 ∈ 𝑍
18 neg1z 11357 . . . . . . . . 9 -1 ∈ ℤ
19 fveq2 6148 . . . . . . . . . . . 12 (𝑥 = -1 → (abs‘𝑥) = (abs‘-1))
20 ax-1cn 9938 . . . . . . . . . . . . . 14 1 ∈ ℂ
2120absnegi 14073 . . . . . . . . . . . . 13 (abs‘-1) = (abs‘1)
2221, 13eqtri 2643 . . . . . . . . . . . 12 (abs‘-1) = 1
2319, 22syl6eq 2671 . . . . . . . . . . 11 (𝑥 = -1 → (abs‘𝑥) = 1)
2423breq1d 4623 . . . . . . . . . 10 (𝑥 = -1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1))
2524, 7elrab2 3348 . . . . . . . . 9 (-1 ∈ 𝑍 ↔ (-1 ∈ ℤ ∧ 1 ≤ 1))
2618, 11, 25mpbir2an 954 . . . . . . . 8 -1 ∈ 𝑍
2717, 26keepel 4127 . . . . . . 7 if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ∈ 𝑍
289, 27keepel 4127 . . . . . 6 if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ 𝑍
2928a1i 11 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ 𝑛 = 2) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ 𝑍)
30 simpl1 1062 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℤ)
3130ad2antrr 761 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → 𝐴 ∈ ℤ)
32 simplr 791 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → 𝑛 ∈ ℙ)
33 simpr 477 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → ¬ 𝑛 = 2)
3433neqned 2797 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → 𝑛 ≠ 2)
35 eldifsn 4287 . . . . . . 7 (𝑛 ∈ (ℙ ∖ {2}) ↔ (𝑛 ∈ ℙ ∧ 𝑛 ≠ 2))
3632, 34, 35sylanbrc 697 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → 𝑛 ∈ (ℙ ∖ {2}))
377lgslem4 24925 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) ∈ 𝑍)
3831, 36, 37syl2anc 692 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) ∈ 𝑍)
3929, 38ifclda 4092 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)) ∈ 𝑍)
40 simpr 477 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ ℙ)
41 simpll2 1099 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → 𝑁 ∈ ℤ)
42 simpll3 1100 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → 𝑁 ≠ 0)
43 pczcl 15477 . . . . 5 ((𝑛 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑛 pCnt 𝑁) ∈ ℕ0)
4440, 41, 42, 43syl12anc 1321 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑁) ∈ ℕ0)
45 ssrab2 3666 . . . . . . 7 {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⊆ ℤ
467, 45eqsstri 3614 . . . . . 6 𝑍 ⊆ ℤ
47 zsscn 11329 . . . . . 6 ℤ ⊆ ℂ
4846, 47sstri 3592 . . . . 5 𝑍 ⊆ ℂ
497lgslem3 24924 . . . . 5 ((𝑎𝑍𝑏𝑍) → (𝑎 · 𝑏) ∈ 𝑍)
5048, 49, 17expcllem 12811 . . . 4 ((if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)) ∈ 𝑍 ∧ (𝑛 pCnt 𝑁) ∈ ℕ0) → (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)) ∈ 𝑍)
5139, 44, 50syl2anc 692 . . 3 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)) ∈ 𝑍)
5217a1i 11 . . 3 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ ¬ 𝑛 ∈ ℙ) → 1 ∈ 𝑍)
5351, 52ifclda 4092 . 2 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) → if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1) ∈ 𝑍)
54 lgsval.1 . 2 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
5553, 54fmptd 6340 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  {crab 2911  cdif 3552  ifcif 4058  {csn 4148  {cpr 4150   class class class wbr 4613  cmpt 4673  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  0cc0 9880  1c1 9881   + caddc 9883  cle 10019  cmin 10210  -cneg 10211   / cdiv 10628  cn 10964  2c2 11014  7c7 11019  8c8 11020  0cn0 11236  cz 11321   mod cmo 12608  cexp 12800  abscabs 13908  cdvds 14907  cprime 15309   pCnt cpc 15465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-dvds 14908  df-gcd 15141  df-prm 15310  df-phi 15395  df-pc 15466
This theorem is referenced by:  lgscllem  24929  lgsfcl  24930  lgsfle1  24931
  Copyright terms: Public domain W3C validator